266 research outputs found

    Towards a formally designed and verified embedded operating system: case study using the B method

    Get PDF
    The dramatic growth in practical applications for iris biometrics has been accompanied by relevant developments in the underlying algorithms and techniques. Along with the research focused on near-infrared images captured with subject cooperation, e orts are being made to minimize the trade-o between the quality of the captured data and the recognition accuracy on less constrained environments, where images are obtained at the visible wavelength, at increased distances, over simpli ed acquisition protocols and adverse lightning conditions. At a rst stage, interpolation e ects on normalization process are addressed, pointing the outcomes in the overall recognition error rates. Secondly, a couple of post-processing steps to the Daugman's approach are performed, attempting to increase its performance in the particular unconstrained environments this thesis assumes. Analysis on both frequency and spatial domains and nally pattern recognition methods are applied in such e orts. This thesis embodies the study on how subject recognition can be achieved, without his cooperation, making use of iris data captured at-a-distance, on-the-move and at visible wavelength conditions. Widely used methods designed for constrained scenarios are analyzed

    Towards a formally verified microkernel using the VCC verifier

    Get PDF
    In this thesis we present the design by contract modular approach to formal verification of an industrial real-time microkernel which was not designed with formal verification in mind. The microkernel module targeted is a particular interrupt manager of xLuna Real Time Operating System (RTOS) for embedded systems built by Critical Software S.A. The annotations were verified automatically using the Microsoft Research Verified C Compiler (VCC) tool to reason about concurrency and safety properties of xLuna kernel. The specifications are based in Hoare-style pre- and post-conditions inlined with the real code. xLuna is a microkernel based on the RTEMS Real-Time Operating System. xLuna extends RTEMS for run a GNU/Linux Operating System, providing a runtime multitasking environment for real-time (RTEMS) and non-real-time (Linux) applications. xLuna runs in a preemptable and concurrent environment. Therefore, we use VCC for reasoning about concurrent executions and some functional and safety properties of xLuna microkernel. VCC is an automated verifier for concurrent C programs that is being developed by Microsoft Research, Redmond, USA and European Microsoft Innovation Center (EMIC), Aachen, Germany. VCC is being built and used for operating system verification which makes it suitable for our verification work. Specifications were added to xLuna code following a modular approach to the verification of a specific microkernel module, namely the Interrupt Request (IRQ) module. The Verified C Compiler (VCC) annotations added cover approximately 80% of the IRQ manager C code (the remaining 20% of the code are relative to auxiliary functions outside the scope of our verification work). All the annotations were automatically verified and proven to be correct

    Applying formal verification to microkernel IPC at meta

    Get PDF
    We use Iris, an implementation of concurrent separation logic in the Coq proof assistant, to verify two queue data structures used for inter-process communication in an operating system under development. Our motivations are twofold. First, we wish to leverage formal verification to boost confidence in a delicate piece of industrial code that was subject to numerous revisions. Second, we aim to gain information on the cost-benefit tradeoff of applying a state-of-the-art formal verification tool in our industrial setting. On both fronts, our endeavor has been a success. The verification effort proved that the queue algorithms are correct and uncovered four algorithmic simplifications as well as bugs in client code. The simplifications involve the removal of two memory barriers, one atomic load, and one boolean check, all in a performance-sensitive part of the OS. Removing the redundant boolean check revealed unintended uses of uninitialized memory in multiple device drivers, which were fixed. The proof work was completed in person months, not years, by engineers with no prior familiarity with Iris. These findings are spurring further use of verification at Meta

    Formal verification of a real-time operating system

    Get PDF
    Errors caused by the interaction of computer systems with the physical world are hard to mitigate but errors related to the underlying software can be prevented by a more rigorous development of software code. In the context of critical systems, a failure caused by software errors could lead to consequences that are determined to be unacceptable. At the heart of a critical system, a real-time operating system is commonly found. Since the reliability of the entire system depends upon having a reliable operating system, verifying that the operating systems functions as desired is of prime interest. One solution to verify the correctness of significant properties of an existing real-time operating system microkernel (FreeRTOS) applies assisted proof checking to its formalized specification description. The experiment consists of describing real-time operating system characteristics, such as memory safety and scheduler determinism, in Separation Logic — a formal language that allows reasoning about the behaviour of the system in terms of preconditions and postconditions. Once the desired properties are defined in a formal language, a theorem can be constructed to describe the validity of such formula for the given FreeRTOS implementation. Then, by using the Coq proof assistant, a machine-checked proof that such properties hold for FreeRTOS can be carried out. By expressing safety and deterministic properties of an existing real-time operating systems and proving them correct we demonstrate that the current state-of-the-art in theorem-based formal verification, including appropriate logics and proof assistants, make it possible to provide a machine-checked proof of the specification of significant properties for FreeRTOS

    Structuring Interactive Correctness Proofs by Formalizing Coding Idioms

    Get PDF
    This paper examines a novel strategy for developing correctness proofs in interactive software verification for C programs. Rather than proceeding backwards from the generated verification conditions, we start by developing a library of the employed data structures and related coding idioms. The application of that library then leads to correctness proofs that reflect informal arguments about the idioms. We apply this strategy to the low-level memory allocator of the L4 microkernel, a case study discussed in the literature

    Patterns for building dependable systems with trusted bases

    Get PDF
    We propose a set of patterns for structuring a system to be dependable by design. The key idea is to localize the system's most critical requirements into small, reliable parts called trusted bases. We describe two instances of trusted bases: (1) the end-to-end check, which localizes the correctness checking of a computation to end points of a system, and (2) the trusted kernel, which ensures the safety of a set of resources with a small core of a system.Northrop Grumman Cybersecurity Research ConsortiumNational Science Foundation (U.S.) (Deep and Scalable Analysis of Software Grant 0541183)National Science Foundation (U.S.) (CRI: CRD - Development of Alloy Technology and Materials Grant 0707612

    Lessons from Formally Verified Deployed Software Systems (Extended version)

    Full text link
    The technology of formal software verification has made spectacular advances, but how much does it actually benefit the development of practical software? Considerable disagreement remains about the practicality of building systems with mechanically-checked proofs of correctness. Is this prospect confined to a few expensive, life-critical projects, or can the idea be applied to a wide segment of the software industry? To help answer this question, the present survey examines a range of projects, in various application areas, that have produced formally verified systems and deployed them for actual use. It considers the technologies used, the form of verification applied, the results obtained, and the lessons that can be drawn for the software industry at large and its ability to benefit from formal verification techniques and tools. Note: a short version of this paper is also available, covering in detail only a subset of the considered systems. The present version is intended for full reference.Comment: arXiv admin note: text overlap with arXiv:1211.6186 by other author
    • …
    corecore