27 research outputs found

    Using Machine Learning to Improve Cylindrical Algebraic Decomposition

    Get PDF
    Cylindrical Algebraic Decomposition (CAD) is a key tool in computational algebraic geometry, best known as a procedure to enable Quantifier Elimination over real-closed fields. However, it has a worst case complexity doubly exponential in the size of the input, which is often encountered in practice. It has been observed that for many problems a change in algorithm settings or problem formulation can cause huge differences in runtime costs, changing problem instances from intractable to easy. A number of heuristics have been developed to help with such choices, but the complicated nature of the geometric relationships involved means these are imperfect and can sometimes make poor choices. We investigate the use of machine learning (specifically support vector machines) to make such choices instead. Machine learning is the process of fitting a computer model to a complex function based on properties learned from measured data. In this paper we apply it in two case studies: the first to select between heuristics for choosing a CAD variable ordering; the second to identify when a CAD problem instance would benefit from Groebner Basis preconditioning. These appear to be the first such applications of machine learning to Symbolic Computation. We demonstrate in both cases that the machine learned choice outperforms human developed heuristics.This work was supported by EPSRC grant EP/J003247/1; the European Union’s Horizon 2020 research and innovation programme under grant agreement No 712689 (SC2); and the China Scholarship Council (CSC)

    On Parametrizations of State Feedbacks and Static Output Feedbacks and Their Applications

    Get PDF
    In this chapter, we provide an explicit free parametrization of all the stabilizing static state feedbacks for continuous-time Linear-Time-Invariant (LTI) systems, which are given in their state-space representation. The parametrization of the set of all the stabilizing static output feedbacks is next derived by imposing a linear constraint on the stabilizing static state feedbacks of a related system. The parametrizations are utilized for optimal control problems and for pole-placement and exact pole-assignment problems

    Polynomial systems : graphical structure, geometry, and applications

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 199-208).Solving systems of polynomial equations is a foundational problem in computational mathematics, that has several applications in the sciences and engineering. A closely related problem, also prevalent in applications, is that of optimizing polynomial functions subject to polynomial constraints. In this thesis we propose novel methods for both of these tasks. By taking advantage of the graphical and geometrical structure of the problem, our methods can achieve higher efficiency, and we can also prove better guarantees. Various problems in areas such as robotics, power systems, computer vision, cryptography, and chemical reaction networks, can be modeled by systems of polynomial equations, and in many cases the resulting systems have a simple sparsity structure. In the first part of this thesis we represent this sparsity structure with a graph, and study the algorithmic and complexity consequences of this graphical abstraction. Our main contribution is the introduction of a novel data structure, chordal networks, that always preserves the underlying graphical structure of the system. Remarkably, many interesting families of polynomial systems admit compact chordal network representations (of size linear in the number of variables), even though the number of components is exponentially large. Our methods outperform existing techniques by orders of magnitude in applications from algebraic statistics and vector addition systems. We then turn our attention to the study of graphical structure in the computation of matrix permanents, a classical problem from computer science. We provide a novel algorithm that requires Õ(n 2[superscript w]) arithmetic operations, where [superscript w] is the treewidth of its bipartite adjacency graph. We also investigate the complexity of some related problems, including mixed discriminants, hyperdeterminants, and mixed volumes. Although seemingly unrelated to polynomial systems, our results have natural implications on the complexity of solving sparse systems. The second part of this thesis focuses on the problem of minimizing a polynomial function subject to polynomial equality constraints. This problem captures many important applications, including Max-Cut, tensor low rank approximation, the triangulation problem, and rotation synchronization. Although these problems are nonconvex, tractable semidefinite programming (SDP) relaxations have been proposed. We introduce a methodology to derive more efficient (smaller) relaxations, by leveraging the geometrical structure of the underlying variety. The main idea behind our method is to describe the variety with a generic set of samples, instead of relying on an algebraic description. Our methods are particularly appealing for varieties that are easy to sample from, such as SO(n), Grassmannians, or rank k tensors. For arbitrary varieties we can take advantage of the tools from numerical algebraic geometry. Optimization problems from applications usually involve parameters (e.g., the data), and there is often a natural value of the parameters for which SDP relaxations solve the (polynomial) problem exactly. The final contribution of this thesis is to establish sufficient conditions (and quantitative bounds) under which SDP relaxations will continue to be exact as the parameter moves in a neighborhood of the original one. Our results can be used to show that several statistical estimation problems are solved exactly by SDP relaxations in the low noise regime. In particular, we prove this for the triangulation problem, rotation synchronization, rank one tensor approximation, and weighted orthogonal Procrustes.by Diego Cifuentes.Ph. D

    Direct methods for deductive verification of temporal properties in continuous dynamical systems

    Get PDF
    This thesis is concerned with the problem of formal verification of correctness specifications for continuous and hybrid dynamical systems. Our main focus will be on developing and automating general proof principles for temporal properties of systems described by non-linear ordinary differential equations (ODEs) under evolution constraints. The proof methods we consider will work directly with the differential equations and will not rely on the explicit knowledge of solutions, which are in practice rarely available. Our ultimate goal is to increase the scope of formal deductive verification tools for hybrid system designs. We give a comprehensive survey and comparison of available methods for checking set invariance in continuous systems, which provides a foundation for safety verification using inductive invariants. Building on this, we present a technique for constructing discrete abstractions of continuous systems in which spurious transitions between discrete states are entirely eliminated, thereby extending previous work. We develop a method for automatically generating inductive invariants for continuous systems by efficiently extracting reachable sets from their discrete abstractions. To reason about liveness properties in ODEs, we introduce a new proof principle that extends and generalizes methods that have been reported previously and is highly amenable to use as a rule of inference in a deductive verification calculus for hybrid systems. We will conclude with a summary of our contributions and directions for future work

    The Design and Implementation of a High-Performance Polynomial System Solver

    Get PDF
    This thesis examines the algorithmic and practical challenges of solving systems of polynomial equations. We discuss the design and implementation of triangular decomposition to solve polynomials systems exactly by means of symbolic computation. Incremental triangular decomposition solves one equation from the input list of polynomials at a time. Each step may produce several different components (points, curves, surfaces, etc.) of the solution set. Independent components imply that the solving process may proceed on each component concurrently. This so-called component-level parallelism is a theoretical and practical challenge characterized by irregular parallelism. Parallelism is not an algorithmic property but rather a geometrical property of the particular input system’s solution set. Despite these challenges, we have effectively applied parallel computing to triangular decomposition through the layering and cooperation of many parallel code regions. This parallel computing is supported by our generic object-oriented framework based on the dynamic multithreading paradigm. Meanwhile, the required polynomial algebra is sup- ported by an object-oriented framework for algebraic types which allows type safety and mathematical correctness to be determined at compile-time. Our software is implemented in C/C++ and have extensively tested the implementation for correctness and performance on over 3000 polynomial systems that have arisen in practice. The parallel framework has been re-used in the implementation of Hensel factorization as a parallel pipeline to compute roots of a polynomial with multivariate power series coefficients. Hensel factorization is one step toward computing the non-trivial limit points of quasi-components

    Hybrid Symbolic-Numeric Computing in Linear and Polynomial Algebra

    Get PDF
    In this thesis, we introduce hybrid symbolic-numeric methods for solving problems in linear and polynomial algebra. We mainly address the approximate GCD problem for polynomials, and problems related to parametric and polynomial matrices. For symbolic methods, our main concern is their complexity and for the numerical methods we are more concerned about their stability. The thesis consists of 5 articles which are presented in the following order: Chapter 1, deals with the fundamental notions of conditioning and backward error. Although our results are not novel, this chapter is a novel explication of conditioning and backward error that underpins the rest of the thesis. In Chapter 2, we adapt Victor Y. Pan\u27s root-based algorithm for finding approximate GCD to the case where the polynomials are expressed in Bernstein bases. We use the numerically stable companion pencil of G. F. Jónsson to compute the roots, and the Hopcroft-Karp bipartite matching method to find the degree of the approximate GCD. We offer some refinements to improve the process. In Chapter 3, we give an algorithm with similar idea to Chapter 2, which finds an approximate GCD for a pair of approximate polynomials given in a Lagrange basis. More precisely, we suppose that these polynomials are given by their approximate values at distinct known points. We first find each of their roots by using a Lagrange basis companion matrix for each polynomial. We introduce new clustering algorithms and use them to cluster the roots of each polynomial to identify multiple roots, and then marry the two polynomials using a Maximum Weight Matching (MWM) algorithm, to find their GCD. In Chapter 4, we define ``generalized standard triples\u27\u27 X, zC1 - C0, Y of regular matrix polynomials P(z) in order to use the representation X(zC1 - C0)-1 Y=P-1(z). This representation can be used in constructing algebraic linearizations; for example, for H(z) = z A(z)B(z) + C from linearizations for A(z) and B(z). This can be done even if A(z) and B(z) are expressed in differing polynomial bases. Our main theorem is that X can be expressed using the coefficients of 1 in terms of the relevant polynomial basis. For convenience we tabulate generalized standard triples for orthogonal polynomial bases, the monomial basis, and Newton interpolational bases; for the Bernstein basis; for Lagrange interpolational bases; and for Hermite interpolational bases. We account for the possibility of common similarity transformations. We give explicit proofs for the less familiar bases. Chapter 5 is devoted to parametric linear systems (PLS) and related problems, from a symbolic computational point of view. PLS are linear systems of equations in which some symbolic parameters, that is, symbols that are not considered to be candidates for elimination or solution in the course of analyzing the problem, appear in the coefficients of the system. We assume that the symbolic parameters appear polynomially in the coefficients and that the only variables to be solved for are those of the linear system. It is well-known that it is possible to specify a covering set of regimes, each of which is a semi-algebraic condition on the parameters together with a solution description valid under that condition.We provide a method of solution that requires time polynomial in the matrix dimension and the degrees of the polynomials when there are up to three parameters. Our approach exploits the Hermite and Smith normal forms that may be computed when the system coefficient domain is mapped to the univariate polynomial domain over suitably constructed fields. Our approach effectively identifies intrinsic singularities and ramification points where the algebraic and geometric structure of the matrix changes. Specially parametric eigenvalue problems can be addressed as well. Although we do not directly address the problem of computing the Jordan form, our approach allows the construction of the algebraic and geometric eigenvalue multiplicities revealed by the Frobenius form, which is a key step in the construction of the Jordan form of a matrix

    Control Systems in Engineering and Optimization Techniques

    Get PDF
    The portfolio diversification strategy study is useful to help investors to plan for the best investment strategy in maximizing return with the given level of risk or minimizing risk. Further, a new set of generalized sufficient conditions for the existence and uniqueness of the solution and finite-time stability has been achieved by using Generalized Gronwall-Bellman inequality. Moreover, a novel development is proposed to solve classical control theory’s difference diagrams and transfer functions. Advanced TCP strategies and free parametrization for continuous-time LTI systems and quality of operation of control systems are presented
    corecore