1,131 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationEmbedded systems are often deployed in a variety of mission-critical fields, such as car control systems, the artificial pace maker, and the Mars rover. There is usually significant monetary value or human safety associated with such systems. It is thus desirable to prove that they work as intended or at least do not behave in a harmful way. There has been considerable effort to prove the correctness of embedded systems. However, most of this effort is based on the assumption that embedded systems do not have any peripheral devices and interrupt handling. This is too idealistic because embedded systems typically depend on some peripheral devices to provide their functionality, and in most cases these peripheral devices interact with the processor core through interrupts so that the system can support multiple devices in a real time fashion. My research, which focuses on constrained embedded systems, provides a framework for verifying realistic device driver software at the machine code level. The research has two parts. In the first part of my research, I created an abstract device model that can be plugged into an existing formal semantics for an instruction set architecture. Then I instantiated the abstract model with a model for the serial port for a real embedded processor, and plugged it into the ARM6 instruction set architecture (ISA) model from the University of Cambridge, and verified full correctness of a polling-based open source driver for the serial port. In the second part, I expanded the abstract device model and the serial port model to support interrupts, modified the latest ARMv7 model from the University of Cambridge to be compatible with the abstract device model, and extended the Hoare logic from the University of Cambridge to support hardware interrupt handling. Using this extended tool chain, I verified full correctness of an interrupt-driven open source driver for the serial port. To the best of my knowledge, this is the first full correctness verification of an interrupt-driven device driver. It is also the first time a device driver with inherent timing constraints has been fully verified. Besides the proof of full correctness for realistic serial port drivers, this research produced an abstract device model, a formal specification of the circular bu er at assembly level, a formal specification for the serial port, a formal ARM system-on-chip (SoC) model which can be extended by plugging in device models, and the inference rules to reason about interrupt-driven programs

    Formal Verification of Demand Paging

    No full text

    Towards the formal verification of the requirements and design of a processor interface unit

    Get PDF
    The formal verification of the design and partial requirements for a Processor Interface Unit (PIU) using the Higher Order Logic (HOL) theorem-proving system is described. The processor interface unit is a single-chip subsystem within a fault-tolerant embedded system under development within the Boeing Defense and Space Group. It provides the opportunity to investigate the specification and verification of a real-world subsystem within a commercially-developed fault-tolerant computer. An overview of the PIU verification effort is given. The actual HOL listing from the verification effort are documented in a companion NASA contractor report entitled 'Towards the Formal Verification of the Requirements and Design of a Processor Interface Unit - HOL Listings' including the general-purpose HOL theories and definitions that support the PIU verification as well as tactics used in the proofs

    Modeling and Validation of a Data Process Unit Control for Space Applications

    No full text
    International audienceData process unit (DPU) is a typical embedded system. It is widely used in space applications to collect data from sensors, process data and send the data to its upper master computer. In this paper, we use the BIP framework to model and validate a DPU system of a real space application. We first build the system model including the control software, hardware and the environment. Validation is by extensive simulation of a monitored system obtained as the composition of the DPU model with monitors. A monitor checks a requirement by continuously sensing the state of the model and reaching an error state if the requirement is violated. We checked fault-tolerance for di erent fault models and detected several errors that under some conditions, could correspond to real implementation errors

    Advanced software techniques for space shuttle data management systems Final report

    Get PDF
    Airborne/spaceborn computer design and techniques for space shuttle data management system
    • …
    corecore