280 research outputs found

    A Certificateless One-Way Group Key Agreement Protocol for Point-to-Point Email Encryption

    Get PDF
    Over the years, email has evolved and grown to one of the most widely used form of communication between individuals and organizations. Nonetheless, the current information technology standards do not value the significance of email security in today\u27s technologically advanced world. Not until recently, email services such as Yahoo and Google started to encrypt emails for privacy protection. Despite that, the encrypted emails will be decrypted and stored in the email service provider\u27s servers as backup. If the server is hacked or compromised, it can lead to leakage and modification of one\u27s email. Therefore, there is a strong need for point-to-point (P2P) email encryption to protect email user\u27s privacy. P2P email encryption schemes strongly rely on the underlying Public Key Cryptosystems (PKC). The evolution of the public key cryptography from the traditional PKC to the Identity-based PKC (ID-PKC) and then to the Certificateless PKC (CL-PKC) provides a better and more suitable cryptosystem to implement P2P email encryption. Many current public-key based cryptographic protocols either suffer from the expensive public-key certificate infrastructure (in traditional PKC) or the key escrow problem (in ID-PKC). CL-PKC is a relatively new cryptosystem that was designed to overcome both problems. In this thesis, we present a CL-PKC group key agreement protocol, which is, as the author\u27s knowledge, the first one with all the following features in one protocol: (1) certificateless and thus there is no key escrow problem and no public key certificate infrastructure is required. (2) one-way group key agreement and thus no back-and-forth message exchange is required; (3) n-party group key agreement (not just 2- or 3-party); and (4) no secret channel is required for key distribution. With the above features, P2P email encryption can be implemented securely and efficiently. This thesis provides a security proof for the proposed protocol using ``proof by simulation\u27\u27. Efficiency analysis of the protocol is also presented in this thesis. In addition, we have implemented the prototypes (email encryption systems) in two different scenarios in this thesis

    Low-latency mix networks for anonymous communication

    Get PDF
    Every modern online application relies on the network layer to transfer information, which exposes the metadata associated with digital communication. These distinctive characteristics encapsulate equally meaningful information as the content of the communication itself and allow eavesdroppers to uniquely identify users and their activities. Hence, by exposing the IP addresses and by analyzing patterns of the network traffic, a malicious entity can deanonymize most online communications. While content confidentiality has made significant progress over the years, existing solutions for anonymous communication which protect the network metadata still have severe limitations, including centralization, limited security, poor scalability, and high-latency. As the importance of online privacy increases, the need to build low-latency communication systems with strong security guarantees becomes necessary. Therefore, in this thesis, we address the problem of building multi-purpose anonymous networks that protect communication privacy. To this end, we design a novel mix network Loopix, which guarantees communication unlinkability and supports applications with various latency and bandwidth constraints. Loopix offers better security properties than any existing solution for anonymous communications while at the same time being scalable and low-latency. Furthermore, we also explore the problem of active attacks and malicious infrastructure nodes, and propose a Miranda mechanism which allows to efficiently mitigate them. In the second part of this thesis, we show that mix networks may be used as a building block in the design of a private notification system, which enables fast and low-cost online notifications. Moreover, its privacy properties benefit from an increasing number of users, meaning that the system can scale to millions of clients at a lower cost than any alternative solution

    A fast and verified software stack for secure function evaluation

    Get PDF
    We present a high-assurance software stack for secure function evaluation (SFE). Our stack consists of three components: i. a verified compiler (CircGen) that translates C programs into Boolean circuits; ii. a verified implementation of Yao’s SFE protocol based on garbled circuits and oblivious transfer; and iii. transparent application integration and communications via FRESCO, an open-source framework for secure multiparty computation (MPC). CircGen is a general purpose tool that builds on CompCert, a verified optimizing compiler for C. It can be used in arbitrary Boolean circuit-based cryptography deployments. The security of our SFE protocol implementation is formally verified using EasyCrypt, a tool-assisted framework for building high-confidence cryptographic proofs, and it leverages a new formalization of garbled circuits based on the framework of Bellare, Hoang, and Rogaway (CCS 2012). We conduct a practical evaluation of our approach, and conclude that it is competitive with state-of-the-art (unverified) approaches. Our work provides concrete evidence of the feasibility of building efficient, verified, implementations of higher-level cryptographic systems. All our development is publicly available.POCI-01-0145-FEDER-006961, FCT-PD/BD/113967/2015info:eu-repo/semantics/publishedVersio

    Scaling Distributed Ledgers and Privacy-Preserving Applications

    Get PDF
    This thesis proposes techniques aiming to make blockchain technologies and smart contract platforms practical by improving their scalability, latency, and privacy. This thesis starts by presenting the design and implementation of Chainspace, a distributed ledger that supports user defined smart contracts and execute user-supplied transactions on their objects. The correct execution of smart contract transactions is publicly verifiable. Chainspace is scalable by sharding state; it is secure against subsets of nodes trying to compromise its integrity or availability properties through Byzantine Fault Tolerance (BFT). This thesis also introduces a family of replay attacks against sharded distributed ledgers targeting cross-shard consensus protocols; they allow an attacker, with network access only, to double-spend resources with minimal efforts. We then build Byzcuit, a new cross-shard consensus protocol that is immune to those attacks and that is tailored to run at the heart of Chainspace. Next, we propose FastPay, a high-integrity settlement system for pre-funded payments that can be used as a financial side-infrastructure for Chainspace to support low-latency retail payments. This settlement system is based on Byzantine Consistent Broadcast as its core primitive, foregoing the expenses of full atomic commit channels (consensus). The resulting system has extremely low-latency for both confirmation and payment finality. Finally, this thesis proposes Coconut, a selective disclosure credential scheme supporting distributed threshold issuance, public and private attributes, re-randomization, and multiple unlinkable selective attribute revelations. It ensures authenticity and availability even when a subset of credential issuing authorities are malicious or offline, and natively integrates with Chainspace to enable a number of scalable privacy-preserving applications

    Tõhus peit- ja aktiivse ründaja vastu kaitstud turvaline ühisarvutus

    Get PDF
    Turvaline ühisarvutus on tänapäevase krüptograafia üks tähtsamaid kasutusviise, mis koondab elegantsed matemaatilised lahendused praktiliste rakenduste ehitamiseks, võimaldades mitmel erineval andmeomanikul sooritada oma andmetega suvalisi ühiseid arvutusi, ilma neid andmeid üksteisele avaldamata. Passiivse ründaja vastu turvalised protokollid eeldavad, et kõik osapooled käituvad ausalt. Aktiivse ründaja vastu turvalised protokollid ei lekita privaatseid andmeid sõltumata ründaja käitumisest. Käesolevas töös esitatakse üldine meetod, mis teisendab passiivse ründaja vastu turvalised ühisarvutusprotokollid turvaliseks aktiivse ründaja vastu. Meetod on optimeeritud kolme osapoolega arvutusteks üle algebraliste ringide; praktikas on see väga efektiivne mudel, mis teeb reaalse maailma rakendused teostatavateks. Meetod lisab esialgsele arvutusprotokollile täitmisjärgse verifitseerimisfaasi, mis muudab valesti käitunud osapooltel vahelejäämise vältimise tõenäosuse kaduvväikseks, säilitades esialgse protokolli turvagarantiid. Lisaks uurib käesolev töö rünnete uut eesmärki, mis seisneb mingi ausa osapoole vaate manipuleerimises sellisel viisil, et ta saaks midagi teada teise ausa osapoole privaatsete andmete kohta. Ründaja ise ei tarvitse seda infot üldse teada saada. Sellised ründed on olulised, sest need kohustavad ausat osapoolt tühjendama oma süsteemi teiste osapoolte andmetest, kuid see ülesanne võib olla päris mittetriviaalne. Eelnevalt pakutud verifitseerimismehhanisme täiendatakse nii, et privaatsed andmed oleksid kaitstud ka ausate osapoolte eest. Paljud ühisarvutusplatvormid on varustatud programmeerimiskeelega, mis võimaldab kirjutada privaatsust säilitavaid rakendusi ilma allolevale krüptograafiale mõtlemata. Juhul, kui programm sisaldab tingimuslauseid, kus arvutusharu valik sõltub privaatsetest andmetest, ei tohi ükski osapool haru valikust midagi teada, nii et üldjuhul peavad osapooled täitma kõik harud. Harude suure arvu kor-ral võib arvutuslik lisakulu olla ülisuur, sest enamik vahetulemustest visatakse ära. Käesolevas töös pakutakse selliseid lisakulusid vähendavat optimeerimist.Secure multiparty computation is one of the most important employments of modern cryptography, bringing together elegant mathematical solutions to build up useful practical applications. It allows several distinct data owners to perform arbitrary collaborative computation on their private data without leaking any information to each other. Passively secure protocols assume that all parties follow the protocol rules. Actively secure protocols do not leak private data regardless of the attacker’s behaviour. This thesis presents a generic method for turning passively secure multiparty protocols to actively secure ones. The method is optimized for three party computation over algebraic rings, which has proven to be quite an efficient model, making large real-world applications feasible. Our method adds to the protocol a post-execution verification phase that allows a misbehaving party to escape detection only with negligible probability. It preserves the privacy guarantees of the original protocol. In this thesis, we also study a new adversarial goal in multiparty protocols. The goal is to manipulate the view of some honest party in such a way, that this honest party learns the private data of some other honest party. The adversary itself might not learn this data at all. Such attacks are significant because they create a liability to the first honest party to clean its systems from the second honest party’s data, which may be a highly non-trivial task in practice. We check the security of our verification mechanism in this new model, and we propose some minor modifications that ensure data protection also from the honest parties. Many secure multiparty computation platforms come with a programming language that allows the developer to write privacy-preserving applications without thinking of the underlying cryptography. If a program contains conditional statements where the choice of the computational branch depends on private data, then no party should know which branch has been executed, so in general the parties need to execute all of them. If the number of branches is large, the computational overhead may be enormous, as most of the intermediate results are just discarded. In this thesis, we propose an automatic optimization that reduces this overhead

    Privacy preserving algorithms for newly emergent computing environments

    Get PDF
    Privacy preserving data usage ensures appropriate usage of data without compromising sensitive information. Data privacy is a primary requirement since customers' data is an asset to any organization and it contains customers' private information. Data seclusion cannot be a solution to keep data private. Data sharing as well as keeping data private is important for different purposes, e.g., company welfare, research, business etc. A broad range of industries where data privacy is mandatory includes healthcare, aviation industry, education system, federal law enforcement, etc.In this thesis dissertation we focus on data privacy schemes in emerging fields of computer science, namely, health informatics, data mining, distributed cloud, biometrics, and mobile payments. Linking and mining medical records across different medical service providers are important to the enhancement of health care quality. Under HIPAA regulation keeping medical records private is important. In real-world health care databases, records may well contain errors. Linking the error-prone data and preserving data privacy at the same time is very difficult. We introduce a privacy preserving Error-Tolerant Linking Algorithm to enable medical records linkage for error-prone medical records. Mining frequent sequential patterns such as, patient path, treatment pattern, etc., across multiple medical sites helps to improve health care quality and research. We propose a privacy preserving sequential pattern mining scheme across multiple medical sites. In a distributed cloud environment resources are provided by users who are geographically distributed over a large area. Since resources are provided by regular users, data privacy and security are main concerns. We propose a privacy preserving data storage mechanism among different users in a distributed cloud. Managing secret key for encryption is difficult in a distributed cloud. To protect secret key in a distributed cloud we propose a multilevel threshold secret sharing mechanism. Biometric authentication ensures user identity by means of user's biometric traits. Any individual's biometrics should be protected since biometrics are unique and can be stolen or misused by an adversary. We present a secure and privacy preserving biometric authentication scheme using watermarking technique. Mobile payments have become popular with the extensive use of mobile devices. Mobile applications for payments needs to be very secure to perform transactions and at the same time needs to be efficient. We design and develop a mobile application for secure mobile payments. To secure mobile payments we focus on user's biometric authentication as well as secure bank transaction. We propose a novel privacy preserving biometric authentication algorithm for secure mobile payments

    Hardware-Assisted Secure Computation

    Get PDF
    The theory community has worked on Secure Multiparty Computation (SMC) for more than two decades, and has produced many protocols for many settings. One common thread in these works is that the protocols cannot use a Trusted Third Party (TTP), even though this is conceptually the simplest and most general solution. Thus, current protocols involve only the direct players---we call such protocols self-reliant. They often use blinded boolean circuits, which has several sources of overhead, some due to the circuit representation and some due to the blinding. However, secure coprocessors like the IBM 4758 have actual security properties similar to ideal TTPs. They also have little RAM and a slow CPU.We call such devices Tiny TTPs. The availability of real tiny TTPs opens the door for a different approach to SMC problems. One major challenge with this approach is how to execute large programs on large inputs using the small protected memory of a tiny TTP, while preserving the trust properties that an ideal TTP provides. In this thesis we have investigated the use of real TTPs to help with the solution of SMC problems. We start with the use of such TTPs to solve the Private Information Retrieval (PIR) problem, which is one important instance of SMC. Our implementation utilizes a 4758. The rest of the thesis is targeted at general SMC. Our SMC system, Faerieplay, moves some functionality into a tiny TTP, and thus avoids the blinded circuit overhead. Faerieplay consists of a compiler from high-level code to an arithmetic circuit with special gates for efficient indirect array access, and a virtual machine to execute this circuit on a tiny TTP while maintaining the typical SMC trust properties. We report on Faerieplay\u27s security properties, the specification of its components, and our implementation and experiments. These include comparisons with the Fairplay circuit-based two-party system, and an implementation of the Dijkstra graph shortest path algorithm. We also provide an implementation of an oblivious RAM which supports similar tiny TTP-based SMC functionality but using a standard RAM program. Performance comparisons show Faerieplay\u27s circuit approach to be considerably faster, at the expense of a more constrained programming environment when targeting a circuit

    One-Time Programs from Commodity Hardware

    Get PDF
    One-time programs, originally formulated by Goldwasser et al. [CRYPTO\u2708], are a powerful cryptographic primitive with compelling applications. Known solutions for one-time programs, however, require specialized secure hardware that is not widely available (or, alternatively, access to blockchains and very strong cryptographic tools). In this work we investigate the possibility of realizing one-time programs from a recent and now more commonly available hardware functionality: the counter lockbox. A counter lockbox is a stateful functionality that protects an encryption key under a user-specified password, and enforces a limited number of incorrect guesses. Counter lockboxes have become widely available in consumer devices and cloud platforms. We show that counter lockboxes can be used to realize one-time programs for general functionalities. We develop a number of techniques to reduce the number of counter lockboxes required for our constructions, that may be of independent interest

    A Taxonomy for and Analysis of Anonymous Communications Networks

    Get PDF
    Any entity operating in cyberspace is susceptible to debilitating attacks. With cyber attacks intended to gather intelligence and disrupt communications rapidly replacing the threat of conventional and nuclear attacks, a new age of warfare is at hand. In 2003, the United States acknowledged that the speed and anonymity of cyber attacks makes distinguishing among the actions of terrorists, criminals, and nation states difficult. Even President Obama’s Cybersecurity Chief-elect recognizes the challenge of increasingly sophisticated cyber attacks. Now through April 2009, the White House is reviewing federal cyber initiatives to protect US citizen privacy rights. Indeed, the rising quantity and ubiquity of new surveillance technologies in cyberspace enables instant, undetectable, and unsolicited information collection about entities. Hence, anonymity and privacy are becoming increasingly important issues. Anonymization enables entities to protect their data and systems from a diverse set of cyber attacks and preserves privacy. This research provides a systematic analysis of anonymity degradation, preservation and elimination in cyberspace to enhance the security of information assets. This includes discovery/obfuscation of identities and actions of/from potential adversaries. First, novel taxonomies are developed for classifying and comparing well-established anonymous networking protocols. These expand the classical definition of anonymity and capture the peer-to-peer and mobile ad hoc anonymous protocol family relationships. Second, a unique synthesis of state-of-the-art anonymity metrics is provided. This significantly aids an entity’s ability to reliably measure changing anonymity levels; thereby, increasing their ability to defend against cyber attacks. Finally, a novel epistemic-based mathematical model is created to characterize how an adversary reasons with knowledge to degrade anonymity. This offers multiple anonymity property representations and well-defined logical proofs to ensure the accuracy and correctness of current and future anonymous network protocol design
    corecore