292 research outputs found

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Modeling and performance analysis of an alternative to IEEE 802.11e Hybrid Control Function

    Get PDF
    Modern wireless networks are offering a wide range of applications that require the efficient integration of multimedia and traditional data traffic along with QoS provision. The IEEE 802.11e workgroup has standardized a new QoS enhanced access scheme for wireless LANs, namely Hybrid Control Function (HCF). HCF consists of the Enhanced Distributed Channel Access (EDCA) and the Hybrid Control Channel Access (HCCA) protocols which manage to ensure QoS support. However, they exhibit specific weaknesses that limit network performance. This work analyzes an alternative protocol, called Priority Oriented Adaptive Polling (POAP). POAP is an integrated channel access mechanism, is collision free, it employs priorities to differentiate traffic in a proportional way, it provides fairness, and generally supports QoS for all types of multimedia applications, while efficiently serving background data traffic. POAP is compared to HCF in order to examine the wireless network performance when serving integrated traffic

    An Experimental Analysis of the Call Capacity of IEEE 802.11b Wireless Local Area Networks for VoIP Telephony

    Get PDF
    The use of the Internet to make phone calls is growing in popularity as the Voice over Internet protocol (VoIP) allows users to make phone calls virtually free of charge. The increased uptake of broadband services by domestic users will further increase the use of VoIP telephony. Furthermore, the emergence of low cost wireless networks (namely IEEE 802.11a/b/g WLANs) is expected to bring wireless VoIP into the mainstream. As the number of wireless hotspots increases more users will want to use VoIP calls wherever possible by connecting to open access points (AP). A major concern with VoIP is Quality of Service (QoS). In order for VoIP to be truly successful users must enjoy a similar perceived QoS as a call made over a traditional telephone network. There are many factors that influence QoS which include: throughput, packet delay, delay variation (or jitter), and packet loss. This thesis is an experimental study of the call capacity of an IEEE 802.11b network when using VoIP telephony. Experiments included increasing the number of VoIP stations and also increasing the level of background traffic until network saturation occurs. Results show that the network is capable of supporting at least 16 VoIP stations. Due to the operation of the IEEE 802.11 medium access control (MAC) mechanism, the AP acts as a bottleneck for all traffic destined for wireless stations, in that significant delays can be incurred by VoIP packets which can lead to a poor perceived QoS by users. Consequently the performance of the AP downlink is the critical component in determining VoIP call capacity

    Quality of Service Provisioning for Voice Application over Wlans

    Get PDF
    Résumé Aujourd'hui, les réseaux locaux sans fils WLANs (en anglais Wireless Local Area Networks) sont de plus en plus déployés en raison de leur facilité d'installation et de leur faible coûts. Le standard IEEE (en anglais Institute of Electrical and Electronics Engineers) 802.11 définit les caractéristiques des réseaux locaux sans fil WLANs. Alors que la première norme proposée pouvait soutenir un débit de données jusqu'à 2 Mbps, dans les versions récentes de la norme 802.11, des débits de données pouvant atteindre jusqu'à 200 Mbps seront pris en charge dans les réseaux sans fil de prochaine génération. Garantir les besoins de QoS (en anglais Quality of Service) est un défi considérable pour les réseaux WLAN, en particulier pour les applications multimédia. Vu que largeur de bande disponible dans les réseaux sans fil est limitée, la bande passante supportant la QoS ne peut être facilement augmentée. Cependant, les protocoles efficaces capables de satisfaire la qualité de service doivent être conçus pour améliorer l'utilisation des ressources dans les réseaux. Le protocole de la couche MAC (en anglais Medium Access Control) affecte fondamentalement les paramètres QoS. Le contrôle d'admission est également un élément essentiel pour la qualité de service dans les réseaux locaux sans fil. Ca projet a pour objectif de modéliser et analyser la couche MAC et contrôler l'admission dans des réseaux locaux sans fil 802.11 avec infrastructure basée sur le mécanisme DCF (en anglais Distributed Coordination Function). Bien que notre objectif général est de garantir les besoins de QoS des applications multimédias sur les réseaux sans fil, nous avons répondu à plusieurs questions importantes telles que la modélisation de la couche MAC, l'évaluation de la QoS et le contrôle d'admission. La première contribution de cette recherche est de proposer un cadre analytique qui prend en compte la direction du trafic en mode infrastructure non saturé. Contrairement aux recherches antérieures, dans l'analyse proposée la probabilité de collision d'un paquet transmis par chaque station sans fil en liaison ascendante est différente de la probabilité de collision pour les paquets qui sont transmis à partir du point d'accès en liaison descendante. Ce modèle de distinction entre les modèles backoff par station en liaison ascendante et en liaison descendante est capable d'exprimer la performance MAC en termes de nombre de stations sans fil et plusieurs paramètres système tels que la taille de la fenêtre de contention, le nombre maximum d'étapes backoff, la taille du tampon à la couche MAC, ainsi que les paramètres de trafic tels que les durées de conversation, le silence et le taux d'arrivée. Contrairement aux études précédentes, nous appliquons deux groupes d'équations, un groupe est défini pour la station sans fil et l'autre pour le point d'accès. ----------Abstract Wireless Local Area Networks (WLANs) are widely deployed nowadays because of their low cost and convenient implementation. The Institute of Electrical and Electronics Engineers (IEEE) 802.11 series standards define the specifications for such networks. While the first proposed standard could support a data rate up to 2 Mbps, in the recent upgraded versions of the standard data rates up to 54 Mbps are achievable and up to 200 Mbps are said to be supported in next generation WLANs. An important concern in WLANs is the support of Quality of Service (QoS), specifically for multimedia applications. Because of the limited available bandwidth in wireless networks, bandwidth cannot be easily increased to support QoS. However, efficient protocols capable of providing QoS have to be designed to improve resource utilization in networks. The Medium Access Control (MAC) protocol crucially affects the QoS parameters. Admission control is also an essential element for QoS provisioning in WLANs. Our research covers mathematical modeling and analysis of the MAC layer and admission control considering Distributed Coordination Function (DCF) in infrastructure mode of IEEE 802.11-based WLANs. While our general goal is to guarantee the QoS parameters of multimedia applications over WLANs, we address several important issues such as MAC layer modeling, QoS evaluation and admission control. The first contribution of this research is to propose an analytical framework which takes into account the traffic direction in non-saturated infrastructure mode of WLANs. Unlike previous work, in the proposed analysis the collision probability of a packet transmitted by each wireless station in the uplink direction is different from the probability of collision for the packets transmitted from the access point in the downlink direction. Our model differentiates between per-station backoff models in the uplink and downlink and is capable of expressing the MAC performance in terms of several system parameters such as contention window size, maximum number of backoff stages, size of buffer at the MAC layer, traffic parameters such as talk and silent durations and arrival rate, as well as the number of wireless stations. In contrast to the previous studies, we apply two groups of equations, one group is defined for the wireless station and the other one for the access point. These equations represent the transmission probability, probability of collision and the probability of being in the busy state in terms of the number of wireless stations, the traffic arrival rate and system parameters such as the size of the contention window and maximum number of retransmissions
    • …
    corecore