3,661 research outputs found

    Building a sign language corpus for use in machine translation

    Get PDF
    In recent years data-driven methods of machine translation (MT) have overtaken rule-based approaches as the predominant means of automatically translating between languages. A pre-requisite for such an approach is a parallel corpus of the source and target languages. Technological developments in sign language (SL) capturing, analysis and processing tools now mean that SL corpora are becoming increasingly available. With transcription and language analysis tools being mainly designed and used for linguistic purposes, we describe the process of creating a multimedia parallel corpus specifically for the purposes of English to Irish Sign Language (ISL) MT. As part of our larger project on localisation, our research is focussed on developing assistive technology for patients with limited English in the domain of healthcare. Focussing on the first point of contact a patient has with a GP’s office, the medical secretary, we sought to develop a corpus from the dialogue between the two parties when scheduling an appointment. Throughout the development process we have created one parallel corpus in six different modalities from this initial dialogue. In this paper we discuss the multi-stage process of the development of this parallel corpus as individual and interdependent entities, both for our own MT purposes and their usefulness in the wider MT and SL research domains

    Expressive characters and a text chat interface

    Get PDF

    The Fractured Memory of a Mind’s Eye

    Get PDF
    The work I create is informed by questioning reality/identity, the fractalizing planes of existence our essence occupies, and the artifacts of memory experience navigating through space time. While existing in this realm of oversaturated media and neon glow, I question the effects of pervasive data systems overloading or programming the mental software we possess. My work includes humor as a means of exploring these conventions while also displaying psychedelic surrealist imagery to help break away from the conscious prison this existence births our concept apparatuses within

    Integration of a Spanish-to-LSE machine translation system into an e-learning platform

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-21657-2_61This paper presents the first results of the integration of a Spanish-to-LSE Machine Translation (MT) system into an e-learning platform. Most e-learning platforms provide speech-based contents, which makes them inaccessible to the Deaf. To solve this issue, we have developed a MT system that translates Spanish speech-based contents into LSE. To test our MT system, we have integrated it into an e-learning tool. The e-learning tool sends the audio to our platform. The platform sends back the subtitles and a video stream with the signed translation to the e-learning tool. Preliminary results, evaluating the sign language synthesis module, show an isolated sign recognition accuracy of 97%. The sentence recognition accuracy was of 93%.Authors would like to acknowledge the FPU-UAM grant program for its financial support. Authors are grateful to the FCNSE linguistic department for sharing their knowledge in LSE and performing the evaluations. Many thanks go to María Chulvi and Benjamín Nogal for providing help during the imple-mentation of this system. This work was partially supported by the Telefónica Móviles España S.A. project number 10-047158-TE-Ed-01-1

    A Representation of Selected Nonmanual Signals in American Sign Language

    Get PDF
    Computer-generated three-dimensional animation holds great promise for synthesizing utterances in American Sign Language (ASL) that are not only grammatical, but believable by members of the Deaf community. Animation poses several challenges stemming from the massive amounts of data necessary to specify the movement of three-dimensional geometry, and there is no current system that facilitates the synthesis of nonmanual signals. However, the linguistics of ASL can aid in surmounting the challenge by providing structure and rules for organizing the data. This work presents a first method for representing ASL linguistic and extralinguistic processes that involve the face. Any such representation must be capable of expressing the subtle nuances of ASL. Further, it must be able to represent co-occurrences because many ASL signs require that two or more nonmanual signals be used simultaneously. In fact simultaneity of multiple nonmanual signals can occur on the same facial feature. Additionally, such a system should allow both binary and incremental nonmanual signals to display the full range of adjectival and adverbial modifiers. Validating such a representation requires both the affirmation that nonmanual signals are indeed necessary in the animation of ASL, and the evaluation of the effectiveness of the new representation in synthesizing nonmanual signals. In this study, members of the Deaf community viewed animations created with the new representation and answered questions concerning the influence of selected nonmanual signals on the perceived meaning of the synthesized utterances. Results reveal that, not only is the representation capable of effectively portraying nonmanual signals, but also that it can be used to combine various nonmanual signals in the synthesis of complete ASL sentences. In a study with Deaf users, participants viewing synthesized animations consistently identified the intended nonmanual signals correctly

    Synthesizing mood-affected signed messages: Modifications to the parametric synthesis

    Full text link
    This is the author’s version of a work that was accepted for publication in International Journal of Human-Computer Studies. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Human-Computer Studies,70, 4 (2012) DOI: 10.1016/j.ijhcs.2011.11.003This paper describes the first approach in synthesizing mood-affected signed contents. The research focuses on the modifications applied to a parametric sign language synthesizer (based on phonetic descriptions of the signs). We propose some modifications that will allow for the synthesis of different perceived frames of mind within synthetic signed messages. Three of these proposals focus on modifications to three different signs' phonologic parameters (the hand shape, the movement and the non-hand parameter). The other two proposals focus on the temporal aspect of the synthesis (sign speed and transition duration) and the representation of muscular tension through inverse kinematics procedures. These resulting variations have been evaluated by Spanish deaf signers, who have concluded that our system can generate the same signed message with three different frames of mind, which are correctly identified by Spanish Sign Language signers

    Intelligent visual media processing: when graphics meets vision

    Get PDF
    The computer graphics and computer vision communities have been working closely together in recent years, and a variety of algorithms and applications have been developed to analyze and manipulate the visual media around us. There are three major driving forces behind this phenomenon: i) the availability of big data from the Internet has created a demand for dealing with the ever increasing, vast amount of resources; ii) powerful processing tools, such as deep neural networks, provide eïżœective ways for learning how to deal with heterogeneous visual data; iii) new data capture devices, such as the Kinect, bridge between algorithms for 2D image understanding and 3D model analysis. These driving forces have emerged only recently, and we believe that the computer graphics and computer vision communities are still in the beginning of their honeymoon phase. In this work we survey recent research on how computer vision techniques beneïżœt computer graphics techniques and vice versa, and cover research on analysis, manipulation, synthesis, and interaction. We also discuss existing problems and suggest possible further research directions

    The Role of Emotional and Facial Expression in Synthesised Sign Language Avatars

    Get PDF
    This thesis explores the role that underlying emotional facial expressions might have in regards to understandability in sign language avatars. Focusing specifically on Irish Sign Language (ISL), we examine the Deaf community’s requirement for a visual-gestural language as well as some linguistic attributes of ISL which we consider fundamental to this research. Unlike spoken language, visual-gestural languages such as ISL have no standard written representation. Given this, we compare current methods of written representation for signed languages as we consider: which, if any, is the most suitable transcription method for the medical receptionist dialogue corpus. A growing body of work is emerging from the field of sign language avatar synthesis. These works are now at a point where they can benefit greatly from introducing methods currently used in the field of humanoid animation and, more specifically, the application of morphs to represent facial expression. The hypothesis underpinning this research is: augmenting an existing avatar (eSIGN) with various combinations of the 7 widely accepted universal emotions identified by Ekman (1999) to deliver underlying facial expressions, will make that avatar more human-like. This research accepts as true that this is a factor in improving usability and understandability for ISL users. Using human evaluation methods (Huenerfauth, et al., 2008) the research compares an augmented set of avatar utterances against a baseline set with regards to 2 key areas: comprehension and naturalness of facial configuration. We outline our approach to the evaluation including our choice of ISL participants, interview environment, and evaluation methodology. Remarkably, the results of this manual evaluation show that there was very little difference between the comprehension scores of the baseline avatars and those augmented withEFEs. However, after comparing the comprehension results for the synthetic human avatar “Anna” against the caricature type avatar “Luna”, the synthetic human avatar Anna was the clear winner. The qualitative feedback allowed us an insight into why comprehension scores were not higher in each avatar and we feel that this feedback will be invaluable to the research community in the future development of sign language avatars. Other questions asked in the evaluation focused on sign language avatar technology in a more general manner. Significantly, participant feedback in regard to these questions indicates a rise in the level of literacy amongst Deaf adults as a result of mobile technology

    Emotional engineering of artificial representations of sign languages

    Get PDF
    The fascination and challenge of making an appropriate digital representation of sign language for a highly specialised and culturally rich community such as the Deaf, has brought about the development and production of several digital representations of sign language (DRSL). These range from pictorial depictions of sign language, filmed video recordings to animated avatars (virtual humans). However, issues relating to translating and representing sign language in the digital-domain and the effectiveness of various approaches, has divided the opinion of the target audience. As a result there is still no universally accepted digital representation of sign language. For systems to reach their full potential, researchers have postulated that further investigation is needed into the interaction and representational issues associated with the mapping of sign language into the digital domain. This dissertation contributes a novel approach that investigates the comparative effectiveness of digital representations of sign language within different information delivery contexts. The empirical studies presented have supported the characterisation of the prescribed properties of DRSL's that make it an effective communication system, which when defined by the Deaf community, was often referred to as "emotion". This has led to and supported the developed of the proposed design methodology for the "Emotional Engineering of Artificial Sign Languages", which forms the main contribution of this thesis

    3D Cinemagraphy from a Single Image

    Full text link
    We present 3D Cinemagraphy, a new technique that marries 2D image animation with 3D photography. Given a single still image as input, our goal is to generate a video that contains both visual content animation and camera motion. We empirically find that naively combining existing 2D image animation and 3D photography methods leads to obvious artifacts or inconsistent animation. Our key insight is that representing and animating the scene in 3D space offers a natural solution to this task. To this end, we first convert the input image into feature-based layered depth images using predicted depth values, followed by unprojecting them to a feature point cloud. To animate the scene, we perform motion estimation and lift the 2D motion into the 3D scene flow. Finally, to resolve the problem of hole emergence as points move forward, we propose to bidirectionally displace the point cloud as per the scene flow and synthesize novel views by separately projecting them into target image planes and blending the results. Extensive experiments demonstrate the effectiveness of our method. A user study is also conducted to validate the compelling rendering results of our method.Comment: Accepted by CVPR 2023. Project page: https://xingyi-li.github.io/3d-cinemagraphy
    • 

    corecore