128 research outputs found

    Mobility Management, Quality of Service, and Security in the Design of Next Generation Wireless Network

    Full text link
    The next generation wireless network needs to provide seamless roaming among various access technologies in a heterogeneous environment. In allowing users to access any system at anytime and anywhere, the performance of mobility-enabled protocols is important. While Mobile IPv6 is generally used to support macro-mobility, integrating Mobile IPv6 with Session Initiation Protocol (SIP) to support IP traffic will lead to improved mobility performance. Advanced resource management techniques will ensure Quality of Service (QoS) during real-time mobility within the Next Generation Network (NGN) platform. The techniques may use a QoS Manager to allow end-to-end coordination and adaptation of Quality of Service. The function of the QoS Manager also includes dynamic allocation of resources during handover. Heterogeneous networks raise many challenges in security. A security entity can be configured within the QoS Manager to allow authentication and to maintain trust relationships in order to minimize threats during system handover. The next generation network needs to meet the above requirements of mobility, QoS, and security

    MOBILITY SUPPORT ARCHITECTURES FOR NEXT-GENERATION WIRELESS NETWORKS

    Get PDF
    With the convergence of the wireless networks and the Internet and the booming demand for multimedia applications, the next-generation (beyond the third generation, or B3G) wireless systems are expected to be all IP-based and provide real-time and non-real-time mobile services anywhere and anytime. Powerful and efficient mobility support is thus the key enabler to fulfil such an attractive vision by supporting various mobility scenarios. This thesis contributes to this interesting while challenging topic. After a literature review on mobility support architectures and protocols, the thesis starts presenting our contributions with a generic multi-layer mobility support framework, which provides a general approach to meet the challenges of handling comprehensive mobility issues. The cross-layer design methodology is introduced to coordinate the protocol layers for optimised system design. Particularly, a flexible and efficient cross-layer signalling scheme is proposed for interlayer interactions. The proposed generic framework is then narrowed down with several fundamental building blocks identified to be focused on as follows. As widely adopted, we assume that the IP-based access networks are organised into administrative domains, which are inter-connected through a global IP-based wired core network. For a mobile user who roams from one domain to another, macro (inter-domain) mobility management should be in place for global location tracking and effective handoff support for both real-time and non-real-lime applications. Mobile IP (MIP) and the Session Initiation Protocol (SIP) are being adopted as the two dominant standard-based macro-mobility architectures, each of which has mobility entities and messages in its own right. The work explores the joint optimisations and interactions of MIP and SIP when utilising the complementary power of both protocols. Two distinctive integrated MIP-SIP architectures are designed and evaluated, compared with their hybrid alternatives and other approaches. The overall analytical and simulation results shown significant performance improvements in terms of cost-efficiency, among other metrics. Subsequently, for the micro (intra-domain) mobility scenario where a mobile user moves across IP subnets within a domain, a micro mobility management architecture is needed to support fast handoffs and constrain signalling messaging loads incurred by intra-domain movements within the domain. The Hierarchical MIPv6 (HMIPv6) and the Fast Handovers for MIPv6 (FMIPv6) protocols are selected to fulfil the design requirements. The work proposes enhancements to these protocols and combines them in an optimised way. resulting in notably improved performances in contrast to a number of alternative approaches

    Joint multi-objective MEH selection and traffic path computation in 5G-MEC systems

    Get PDF
    Multi-access Edge Computing (MEC) is an emerging technology that allows to reduce the service latency and traffic congestion and to enable cloud offloading and context awareness. MEC consists in deploying computing devices, called MEC Hosts (MEHs), close to the user. Given the mobility of the user, several problems rise. The first problem is to select a MEH to run the service requested by the user. Another problem is to select the path to steer the traffic from the user to the selected MEH. The paper jointly addresses these two problems. First, the paper proposes a procedure to create a graph that is able to capture both network-layer and application-layer performance. Then, the proposed graph is used to apply the Multi-objective Dijkstra Algorithm (MDA), a technique used for multi-objective optimization problems, in order to find solutions to the addressed problems by simultaneously considering different performance metrics and constraints. To evaluate the performance of MDA, the paper implements a testbed based on AdvantEDGE and Kubernetes to migrate a VideoLAN application between two MEHs. A controller has been realized to integrate MDA with the 5G-MEC system in the testbed. The results show that MDA is able to perform the migration with a limited impact on the network performance and user experience. The lack of migration would instead lead to a severe reduction of the user experience.publishedVersio

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Enhancing Networks via Virtualized Network Functions

    Get PDF
    University of Minnesota Ph.D. dissertation. May 2019. Major: Computer Science. Advisor: Zhi-Li Zhang. 1 computer file (PDF); xii, 116 pages.In an era of ubiquitous connectivity, various new applications, network protocols, and online services (e.g., cloud services, distributed machine learning, cryptocurrency) have been constantly creating, underpinning many of our daily activities. Emerging demands for networks have led to growing traffic volume and complexity of modern networks, which heavily rely on a wide spectrum of specialized network functions (e.g., Firewall, Load Balancer) for performance, security, etc. Although (virtual) network functions (VNFs) are widely deployed in networks, they are instantiated in an uncoordinated manner failing to meet growing demands of evolving networks. In this dissertation, we argue that networks equipped with VNFs can be designed in a fashion similar to how computer software is today programmed. By following the blueprint of joint design over VNFs, networks can be made more effective and efficient. We begin by presenting Durga, a system fusing wide area network (WAN) virtualization on gateway with local area network (LAN) virtualization technology. It seamlessly aggregates multiple WAN links into a (virtual) big pipe for better utilizing WAN links and also provides fast fail-over thus minimizing application performance degradation under WAN link failures. Without the support from LAN virtualization technology, existing solutions fail to provide high reliability and performance required by today’s enterprise applications. We then study a newly standardized protocol, Multipath TCP (MPTCP), adopted in Durga, showing the challenge of associating MPTCP subflows in network for the purpose of boosting throughput and enhancing security. Instead of designing a customized solution in every VNF to conquer this common challenge (making VNFs aware of MPTCP), we implement an online service named SAMPO to be readily integrated into VNFs. Following the same principle, we make an attempt to take consensus as a service in software-defined networks. We illustrate new network failure scenarios that are not explicitly handled by existing consensus algorithms such as Raft, thereby severely affecting their correct or efficient operations. Finally, we re-consider VNFs deployed in a network from the perspective of network administrators. A global view of deployed VNFs brings new opportunities for performance optimization over the network, and thus we explore parallelism in service function chains composing a sequence of VNFs that are typically traversed in-order by data flows

    Annual Report of Undergraduate Research Fellows, August 2011 to May 2012

    Get PDF
    Annual Report of Undergraduate Research Fellows from August 2011 to May 2012

    Actas da 10ÂȘ ConferĂȘncia sobre Redes de Computadores

    Get PDF
    Universidade do MinhoCCTCCentro AlgoritmiCisco SystemsIEEE Portugal Sectio

    Distributed control of reconfigurable mobile network agents for resource coordination

    Get PDF
    Includes abstract.Includes bibliographical references.Considering the tremendous growth of internet applications and network resource federation proposed towards future open access network (FOAN), the need to analyze the robustness of the classical signalling mechanisms across multiple network operators cannot be over-emphasized. It is envisaged, there will be additional challenges in meeting the bandwidth requirements and network management...The first objective of this project is to describe the networking environment based on the support for heterogeneity of network components..
    • 

    corecore