34,872 research outputs found

    The display of electronic commerce within virtual environments

    Get PDF
    In today’s competitive business environment, the majority of companies are expected to be represented on the Internet in the form of an electronic commerce site. In an effort to keep up with current business trends, certain aspects of interface design such as those related to navigation and perception may be overlooked. For instance, the manner in which a visitor to the site might perceive the information displayed or the ease with which they navigate through the site may not be taken into consideration. This paper reports on the evaluation of the electronic commerce sites of three different companies, focusing specifically on the human factors issues such as perception and navigation. Heuristic evaluation, the most popular method for investigating user interface design, is the technique employed to assess each of these sites. In light of the results from the analysis of the evaluation data, virtual environments are suggested as a way of improving the navigation and perception display constraints

    Does "thin client" mean "energy efficient"?

    Get PDF
    The thick client –a personal computer with integral disk storage and local processing capability, which also has access to data and other resources via a network connection – is accepted as the model for providing computing resource in most office environments. The Further and Higher Education sector is no exception to that, and therefore most academic and administrative offices are equipped with desktop computers of this form to support users in their day to day tasks. This system structure has a number of advantages: there is a reduced reliance on network resources; users access a system appropriate to their needs, and may customise “their” system to meet their own personal requirements and working patterns. However it also has disadvantages: some are outside the scope of this project, but of most relevance to the green IT agenda is the fact that relatively complex and expensive (in first cost and in running cost) desktop systems and servers are underutilised – especially in respect of processing power. While some savings are achieved through use of “sleep” modes and similar power reducing mechanisms, in most configurations only a small portion of the overall total available processor resource is utilised. This realisation has led to the promotion of an alternative paradigm, the thin client. In a thin client system, the desktop is shorn of most of its local processing and data storage capability, and essentially acts as a terminal to the server, which now takes on responsibility for data storage and processing. The energy benefit is derived through resource sharing: the processor of the server does the work, and because that processor is shared by all users, a number of users are supported by a single system. Therefore – according to proponents of thin client – the total energy required to support a user group is reduced, since a shared physical resource is used more efficiently. These claims are widely reported: indeed there are a number of estimation tools which show these savings can be achieved; however there appears to be little or no actual measured data to confirm this. The community does not appear to have access to measured data comparing thin and thick client systems in operation in the same situation, allowing direct comparisons to be drawn. This is the main goal of this project. One specific question relates to the overall power use, while it would seem to be obvious that the thin client would require less electricity, what of the server? Two other variations are also considered: it is not uncommon for thin client deployments to continue to use their existing PCs as thin client workstations, with or without modification. Also, attempts by PC makers to reduce the power requirements of their products have given rise to a further variation: the incorporation of low power features in otherwise standard PC technology, working as thick clients. This project was devised to conduct actual measurements in use in a typical university environment. We identified a test area: a mixed administrative and academic office location which supported a range of users, and we made a direct replacement of the current thick client systems with thin client equivalents; in addition, we exchanged a number of PCs operating in thin and thick client mode with devices specifically branded as “low power” PCs and measured their power requirements in both thin and thick modes. We measured the energy consumption at each desktop for the duration of our experiments, and also measured the energy draw of the server designated to supporting the thin client setup, giving us the opportunity to determine the power per user of each technology. Our results show a significant difference in power use between the various candidate technologies, and that a configuration of low power PC in thick client mode returned the lowest power use during our study. We were also aware of other factors surrounding a change such as this: we have addressed the technical issues of implementation and management, and the non-technical or human factors of acceptance and use: all are reported within this document. Finally, our project is necessarily limited to a set of experiments carried out in a particular situation, therefore we use estimation methods to draw wider conclusions and make general observations which should allow others to select appropriate thick or thin client solutions in their situation

    Personalization in cultural heritage: the road travelled and the one ahead

    Get PDF
    Over the last 20 years, cultural heritage has been a favored domain for personalization research. For years, researchers have experimented with the cutting edge technology of the day; now, with the convergence of internet and wireless technology, and the increasing adoption of the Web as a platform for the publication of information, the visitor is able to exploit cultural heritage material before, during and after the visit, having different goals and requirements in each phase. However, cultural heritage sites have a huge amount of information to present, which must be filtered and personalized in order to enable the individual user to easily access it. Personalization of cultural heritage information requires a system that is able to model the user (e.g., interest, knowledge and other personal characteristics), as well as contextual aspects, select the most appropriate content, and deliver it in the most suitable way. It should be noted that achieving this result is extremely challenging in the case of first-time users, such as tourists who visit a cultural heritage site for the first time (and maybe the only time in their life). In addition, as tourism is a social activity, adapting to the individual is not enough because groups and communities have to be modeled and supported as well, taking into account their mutual interests, previous mutual experience, and requirements. How to model and represent the user(s) and the context of the visit and how to reason with regard to the information that is available are the challenges faced by researchers in personalization of cultural heritage. Notwithstanding the effort invested so far, a definite solution is far from being reached, mainly because new technology and new aspects of personalization are constantly being introduced. This article surveys the research in this area. Starting from the earlier systems, which presented cultural heritage information in kiosks, it summarizes the evolution of personalization techniques in museum web sites, virtual collections and mobile guides, until recent extension of cultural heritage toward the semantic and social web. The paper concludes with current challenges and points out areas where future research is needed

    Mapping web personal learning environments

    Get PDF
    A recent trend in web development is to build platforms which are carefully designed to host a plurality of software components (sometimes called widgets or plugins) which can be organized or combined (mashed-up) at user's convenience to create personalized environments. The same holds true for the web development of educational applications. The degree of personalization can depend on the role of users such as in traditional virtual learning environment, where the components are chosen by a teacher in the context of a course. Or, it can be more opened as in a so-called personalized learning environment (PLE). It now exists a wide array of available web platforms exhibiting different functionalities but all built on the same concept of aggregating components together to support different tasks and scenarios. There is now an overlap between the development of PLE and the more generic developments in web 2.0 applications such as social network sites. This article shows that 6 more or less independent dimensions allow to map the functionalities of these platforms: the screen dimensionmaps the visual integration, the data dimension maps the portability of data, the temporal dimension maps the coupling between participants, the social dimension maps the grouping of users, the activity dimension maps the structuring of end users–interactions with the environment, and the runtime dimensionmaps the flexibility in accessing the system from different end points. Finally these dimensions are used to compare 6 familiar Web platforms which could potentially be used in the construction of a PLE

    Applying persuasive design in a diabetes mellitus application

    Get PDF
    This paper describes persuasive design methods and compares this to an application currently under development for diabetes mellitus patients. Various elements of persuasion and a categorization of persuasion types are mentioned. Also discussed are principles of how successful persuasion should be designed, as well as the practical applications and ethics of persuasive design. This paper is not striving for completeness of theories on the topic, but uses the theories to compare it to an application intended for diabetes mellitus patients. The results of this comparison can be used for improvements of the application
    • …
    corecore