1,450 research outputs found

    Programming with process groups: Group and multicast semantics

    Get PDF
    Process groups are a natural tool for distributed programming and are increasingly important in distributed computing environments. Discussed here is a new architecture that arose from an effort to simplify Isis process group semantics. The findings include a refined notion of how the clients of a group should be treated, what the properties of a multicast primitive should be when systems contain large numbers of overlapping groups, and a new construct called the causality domain. A system based on this architecture is now being implemented in collaboration with the Chorus and Mach projects

    CATS: linearizability and partition tolerance in scalable and self-organizing key-value stores

    Get PDF
    Distributed key-value stores provide scalable, fault-tolerant, and self-organizing storage services, but fall short of guaranteeing linearizable consistency in partially synchronous, lossy, partitionable, and dynamic networks, when data is distributed and replicated automatically by the principle of consistent hashing. This paper introduces consistent quorums as a solution for achieving atomic consistency. We present the design and implementation of CATS, a distributed key-value store which uses consistent quorums to guarantee linearizability and partition tolerance in such adverse and dynamic network conditions. CATS is scalable, elastic, and self-organizing; key properties for modern cloud storage middleware. Our system shows that consistency can be achieved with practical performance and modest throughput overhead (5%) for read-intensive workloads

    New Production System for Finnish Meteorological Institute

    Get PDF
    This thesis presents the plans for replacing the production system of Finnish Meteorological Institute (FMI). It begins with a review of the state of the art in distributed systems research, and ends with a design for the replacement production system that is reliable, scalable, and maintainable. The subject production system is a framework for managing the production of different weather predictions and models. We use this framework to abstract away the actual execution of work from its description. This way the different production processes become easily monitored and configured through the production system. Since the amount of data processed by this system is too much for a single computer to handle, we have distributed the production system. Thus we are not dealing with just a framework for production but with a distributed system and hence a solid understanding of distributed systems theory is required in order to replace this production system. The first part of this thesis lays the groundwork for replacing the distributed production system: a review of the state of the art in distributed systems research. It is a concise document of its own which presents the essentials of distributed systems in a clear manner. This part can be used separately from the rest of this thesis as a short introduction to distributed systems. Second part of this thesis presents the subject production system, the need for its replacement, and our design for the new production system that is maintainable, performant, available, reliable, and scalable. We go even further than simply giving a design for this replacement production system, and instead present a practical plan to implement the new production system with Kubernetes, Brigade, and Riak CS

    Exploiting replication in distributed systems

    Get PDF
    Techniques are examined for replicating data and execution in directly distributed systems: systems in which multiple processes interact directly with one another while continuously respecting constraints on their joint behavior. Directly distributed systems are often required to solve difficult problems, ranging from management of replicated data to dynamic reconfiguration in response to failures. It is shown that these problems reduce to more primitive, order-based consistency problems, which can be solved using primitives such as the reliable broadcast protocols. Moreover, given a system that implements reliable broadcast primitives, a flexible set of high-level tools can be provided for building a wide variety of directly distributed application programs

    Replication and fault-tolerance in real-time systems

    Get PDF
    PhD ThesisThe increased availability of sophisticated computer hardware and the corresponding decrease in its cost has led to a widespread growth in the use of computer systems for realtime plant and process control applications. Such applications typically place very high demands upon computer control systems and the development of appropriate control software for these application areas can present a number of problems not normally encountered in other applications. First of all, real-time applications must be correct in the time domain as well as the value domain: returning results which are not only correct but also delivered on time. Further, since the potential for catastrophic failures can be high in a process or plant control environment, many real-time applications also have to meet high reliability requirements. These requirements will typically be met by means of a combination of fault avoidance and fault tolerance techniques. This thesis is intended to address some of the problems encountered in the provision of fault tolerance in real-time applications programs. Specifically,it considers the use of replication to ensure the availability of services in real-time systems. In a real-time environment, providing support for replicated services can introduce a number of problems. In particular, the scope for non-deterministic behaviour in real-time applications can be quite large and this can lead to difficultiesin maintainingconsistent internal states across the members of a replica group. To tackle this problem, a model is proposed for fault tolerant real-time objects which not only allows such objects to perform application specific recovery operations and real-time processing activities such as event handling, but which also allows objects to be replicated. The architectural support required for such replicated objects is also discussed and, to conclude, the run-time overheads associated with the use of such replicated services are considered.The Science and Engineering Research Council

    A review of experiences with reliable multicast

    Get PDF
    • …
    corecore