26,164 research outputs found

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling

    Symbolic Abstractions for Quantum Protocol Verification

    Get PDF
    Quantum protocols such as the BB84 Quantum Key Distribution protocol exchange qubits to achieve information-theoretic security guarantees. Many variants thereof were proposed, some of them being already deployed. Existing security proofs in that field are mostly tedious, error-prone pen-and-paper proofs of the core protocol only that rarely account for other crucial components such as authentication. This calls for formal and automated verification techniques that exhaustively explore all possible intruder behaviors and that scale well. The symbolic approach offers rigorous, mathematical frameworks and automated tools to analyze security protocols. Based on well-designed abstractions, it has allowed for large-scale formal analyses of real-life protocols such as TLS 1.3 and mobile telephony protocols. Hence a natural question is: Can we use this successful line of work to analyze quantum protocols? This paper proposes a first positive answer and motivates further research on this unexplored path

    An Internet Heartbeat

    Get PDF
    Obtaining sound inferences over remote networks via active or passive measurements is difficult. Active measurement campaigns face challenges of load, coverage, and visibility. Passive measurements require a privileged vantage point. Even networks under our own control too often remain poorly understood and hard to diagnose. As a step toward the democratization of Internet measurement, we consider the inferential power possible were the network to include a constant and predictable stream of dedicated lightweight measurement traffic. We posit an Internet "heartbeat," which nodes periodically send to random destinations, and show how aggregating heartbeats facilitates introspection into parts of the network that are today generally obtuse. We explore the design space of an Internet heartbeat, potential use cases, incentives, and paths to deployment

    Creating a Relational Distributed Object Store

    Full text link
    In and of itself, data storage has apparent business utility. But when we can convert data to information, the utility of stored data increases dramatically. It is the layering of relation atop the data mass that is the engine for such conversion. Frank relation amongst discrete objects sporadically ingested is rare, making the process of synthesizing such relation all the more challenging, but the challenge must be met if we are ever to see an equivalent business value for unstructured data as we already have with structured data. This paper describes a novel construct, referred to as a relational distributed object store (RDOS), that seeks to solve the twin problems of how to persistently and reliably store petabytes of unstructured data while simultaneously creating and persisting relations amongst billions of objects.Comment: 12 pages, 5 figure

    Enabling Adaptive Grid Scheduling and Resource Management

    Get PDF
    Wider adoption of the Grid concept has led to an increasing amount of federated computational, storage and visualisation resources being available to scientists and researchers. Distributed and heterogeneous nature of these resources renders most of the legacy cluster monitoring and management approaches inappropriate, and poses new challenges in workflow scheduling on such systems. Effective resource utilisation monitoring and highly granular yet adaptive measurements are prerequisites for a more efficient Grid scheduler. We present a suite of measurement applications able to monitor per-process resource utilisation, and a customisable tool for emulating observed utilisation models. We also outline our future work on a predictive and probabilistic Grid scheduler. The research is undertaken as part of UK e-Science EPSRC sponsored project SO-GRM (Self-Organising Grid Resource Management) in cooperation with BT
    • …
    corecore