1,913 research outputs found

    Computational Sprinting: Exceeding Sustainable Power in Thermally Constrained Systems

    Get PDF
    Although process technology trends predict that transistor sizes will continue to shrink for a few more generations, voltage scaling has stalled and thus future chips are projected to be increasingly more power hungry than previous generations. Particularly in mobile devices which are severely cooling constrained, it is estimated that the peak operation of a future chip could generate heat ten times faster than than the device can sustainably vent. However, many mobile applications do not demand sustained performance; rather they comprise short bursts of computation in response to sporadic user activity. To improve responsiveness for such applications, this dissertation proposes computational sprinting, in which a system greatly exceeds sustainable power margins (by up to 10Ã?) to provide up to a few seconds of high-performance computation when a user interacts with the device. Computational sprinting exploits the material property of thermal capacitance to temporarily store the excess heat generated when sprinting. After sprinting, the chip returns to sustainable power levels and dissipates the stored heat when the system is idle. This dissertation: (i) broadly analyzes thermal, electrical, hardware, and software considerations to analyze the feasibility of engineering a system which can provide the responsiveness of a plat- form with 10Ã? higher sustainable power within today\u27s cooling constraints, (ii) leverages existing sources of thermal capacitance to demonstrate sprinting on a real system today, and (iii) identifies the energy-performance characteristics of sprinting operation to determine runtime sprint pacing policies

    Shape morphing solar shadings: a review

    Get PDF
    This paper provides an overview of available innovative shape morphing building skins and their design principles. In particular, the proposed review deals with comfort-related issues associated with dynamic solar shading devices, building integration of smart materials, and morphological analyses related to the most recent shape morphing solar skins. In the first part of the paper, an introduction to the typologies of movement in architecture, its concept and application are presented. An explanation of biomimetic principles together with an overview of user's response to dynamic shading devices is also provided. This is followed by the description of the design principles for shape morphing solar shadings with particular focus on energy and comfort aspects, smart materials and biomimetic principles for efficient movements. A review of most recent developments on the topics of comfort, users' response and control of dynamic shading devices, is presented and summarized in a comparison table. The main technical and mechanical properties of the most diffused smart materials (Shape Memory Alloys, Shape Memory Polymers and Shape Memory Hybrids) that can be used for innovative shape morphing solar skins are illustrated in detail and compared. Biomimetic principles for efficient movements complete this part of the work. The principles illustrated in the previous part of this paper are then used to critically analyse the most recent examples of building integrated shape morphing shadings

    Transient Optical Characterisation of Donor-Acceptor Block Copolymers for Use in Solar Cells

    Get PDF
    This thesis presents a study of photo-active, semiconducting block copolymers for use in molecular solar cells. Current state-of-the-art organic devices utilise blends of two (or more) materials that are co-deposited from a common solution; the resulting structures formed are determined by material properties and deposition conditions, but often result in configurations that are detrimental to device performance. An answer to this problem comes in the form of the block copolymer; using these materials, devices can be formed from a single material active layer. In addition, the counterbalance of forces within films of block copolymer can lead to nano-scale self-assembly that allows for a strong degree of control over layer equilibrium morphology. Such control will be an important step forward in the evolution of molecular solar cells. The main body of this work is concerned with the study of the photo-physics of photo-conductive block copolymers, especially the generation of free charge. First, an investigation is made into the inherent structure-function relationship in block copolymers. A varying chain length is seen to drastically affect the photoluminescence quenching and yield of long-lived charges. Photovoltaic devices made using these materials show a peak efficiency of 0.11% and correlate with the spectroscopic results, subject to a trade off between charge generation and transport/collection. In a second investigation, the effects of post-fabrication annealing on block copolymer films are considered; studies on annealed samples lead to the conclusion that domain crystallinity is a significant factor in determining the yields of long-lived charge carriers. It is found that these yields are comparable with those of a standard blend (that achieve 75% photon to electron conversion efficiency). Annealing leads to increases in photovoltaic device performance over unannealed samples, although additional control over active layer morphology is necessary for these materials to attain their potential. Following this, a comparative study is made between a block copolymer and a similarly composed blend formed from well studied polyfluorene copolymers. Further advantages of block copolymers are highlighted, including the stability of morphologies generated under different deposition conditions. Finally, a novel tool set is introduced using a block copolymer sample to emphasise the experiments potential with regard to studying interfacial photophysical effects

    Direct energy conversion using liquid metals

    Get PDF
    Liquid metals have excellent properties to be used as heat transport fluids due to their high thermal conductivity and their wide applicable temperature range. The latter issue can be used to go beyond limitations of existing thermal solar energy systems. Furthermore, the direct energy converter Alkali Metal Thermo Electric Converter (AMTEC) can be used to make intangible areas of energy conversion suitable for a wide range of applications. One objective is to investigate AMTEC as a complementary cycle for the next generation of concentrating solar power (CSP) systems. The experimental research taking place in the Karlsruhe Institute of Technology (KIT) is focused on the construction of a flexible AMTEC test facility, development, test and improvement of liquid-anode and vapor-anode AMTEC devices as well as the coupling of the AMTEC cold side to the heat storage tank proposed for the CSP system. Within this project, the investigations foreseen will focus on the analyses of BASE-metal interface, electrode materials and deposition techniques, corrosion and erosion of materials brought in contact with high temperature sodium. This prototype demonstrator is planned to be integrated in the KArlsruhe SOdium LAboratory (KASOLA), a flexible closed mid-size sodium loop, completely in-house designed, presently under construction at the Institute for Neutron Physics and Reactor Technology (INR) within KIT

    Properties of Nanogenerator Materials for Energy-Harvesting Application

    Get PDF
    Advancements in nanotechnology and materials science have led to the development of a variety of nanogenerator materials with improved properties, making energy harvesting technologies increasingly viable for various applications, such as powering wearable devices, remote sensors, and even small electronic gadgets in the future. The evolution of hybrid materials consisting of polymers and nanoparticles as efficient energy harvesters and energy storage devices is in high demand nowadays. Most investigations on organic ferroelectric P(VDF-TrFE) as a polymer host of polymer nanocomposite devices were primally focused on the β phase due to its excellent electrical properties for various application purposes. Nanofiller is also introduced into the polymer host to produce a polymer nanocomposite with enhanced properties. A brief description of various physical quantities related to ferroelectric, dielectric, pyroelectric effects and Thermally Stimulated Current (TSC) for energy harvesting applications in nanogenerator materials is presented. This article explores the different materials and uses of various nanogenerators. It explains the basics of the pyroelectric effect and the structure of pyroelectric nanogenerators (PNGs), as well as recent advancements in micro/nanoscale devices. Additionally, it discusses how the performance of ferroelectric, dielectric, pyroelectric, and TSC are impacted by the annealing treatment of P(VDF-TrFE) polymer
    • …
    corecore