1,755 research outputs found

    K-user Interference Channels: Achievable Secrecy Rate and Degrees of Freedom

    Full text link
    In this work, we consider achievable secrecy rates for symmetric KK-user (K≥3K \ge 3) interference channels with confidential messages. We find that nested lattice codes and layered coding are useful in providing secrecy for these channels. Achievable secrecy rates are derived for very strong interference. In addition, we derive the secure degrees of freedom for a range of channel parameters. As a by-product of our approach, we also demonstrate that nested lattice codes are useful for K-user symmetric interference channels without secrecy constraints in that they yield higher degrees of freedom than previous results.Comment: 5 pages. To appear at IEEE ITW 2009, Volos, June 200

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Secure Degrees of Freedom for Gaussian Channels with Interference: Structured Codes Outperform Gaussian Signaling

    Full text link
    In this work, we prove that a positive secure degree of freedom is achievable for a large class of Gaussian channels as long as the channel is not degraded and the channel is fully connected. This class includes the MAC wire-tap channel, the 2-user interference channel with confidential messages, the 2-user interference channel with an external eavesdropper. Best known achievable schemes to date for these channels use Gaussian signaling. In this work, we show that structured codes outperform Gaussian random codes at high SNR when channel gains are real numbers.Comment: 6 pages, Submitted to IEEE Globecom, March 200

    Weak Secrecy in the Multi-Way Untrusted Relay Channel with Compute-and-Forward

    Full text link
    We investigate the problem of secure communications in a Gaussian multi-way relay channel applying the compute-and-forward scheme using nested lattice codes. All nodes employ half-duplex operation and can exchange confidential messages only via an untrusted relay. The relay is assumed to be honest but curious, i.e., an eavesdropper that conforms to the system rules and applies the intended relaying scheme. We start with the general case of the single-input multiple-output (SIMO) L-user multi-way relay channel and provide an achievable secrecy rate region under a weak secrecy criterion. We show that the securely achievable sum rate is equivalent to the difference between the computation rate and the multiple access channel (MAC) capacity. Particularly, we show that all nodes must encode their messages such that the common computation rate tuple falls outside the MAC capacity region of the relay. We provide results for the single-input single-output (SISO) and the multiple-input single-input (MISO) L-user multi-way relay channel as well as the two-way relay channel. We discuss these results and show the dependency between channel realization and achievable secrecy rate. We further compare our result to available results in the literature for different schemes and show that the proposed scheme operates close to the compute-and-forward rate without secrecy.Comment: submitted to JSAC Special Issue on Fundamental Approaches to Network Coding in Wireless Communication System

    Some results related to the conjecture by Belfiore and Sol\'e

    Full text link
    In the first part of the paper, we consider the relation between kissing number and the secrecy gain. We show that on an n=24m+8kn=24m+8k-dimensional even unimodular lattice, if the shortest vector length is ≥2m\geq 2m, then as the number of vectors of length 2m2m decreases, the secrecy gain increases. We will also prove a similar result on general unimodular lattices. We will also consider the situations with shorter vectors. Furthermore, assuming the conjecture by Belfiore and Sol\'e, we will calculate the difference between inverses of secrecy gains as the number of vectors varies. We will show by an example that there exist two lattices in the same dimension with the same shortest vector length and the same kissing number, but different secrecy gains. Finally, we consider some cases of a question by Elkies by providing an answer for a special class of lattices assuming the conjecture of Belfiore and Sol\'e. We will also get a conditional improvement on some Gaulter's results concerning the conjecture.Comment: This paper contains the note http://arxiv.org/abs/1209.3573. However, there are several new results, including the results concerning a conjecture by Elkie

    Secure Compute-and-Forward in a Bidirectional Relay

    Full text link
    We consider the basic bidirectional relaying problem, in which two users in a wireless network wish to exchange messages through an intermediate relay node. In the compute-and-forward strategy, the relay computes a function of the two messages using the naturally-occurring sum of symbols simultaneously transmitted by user nodes in a Gaussian multiple access (MAC) channel, and the computed function value is forwarded to the user nodes in an ensuing broadcast phase. In this paper, we study the problem under an additional security constraint, which requires that each user's message be kept secure from the relay. We consider two types of security constraints: perfect secrecy, in which the MAC channel output seen by the relay is independent of each user's message; and strong secrecy, which is a form of asymptotic independence. We propose a coding scheme based on nested lattices, the main feature of which is that given a pair of nested lattices that satisfy certain "goodness" properties, we can explicitly specify probability distributions for randomization at the encoders to achieve the desired security criteria. In particular, our coding scheme guarantees perfect or strong secrecy even in the absence of channel noise. The noise in the channel only affects reliability of computation at the relay, and for Gaussian noise, we derive achievable rates for reliable and secure computation. We also present an application of our methods to the multi-hop line network in which a source needs to transmit messages to a destination through a series of intermediate relays.Comment: v1 is a much expanded and updated version of arXiv:1204.6350; v2 is a minor revision to fix some notational issues; v3 is a much expanded and updated version of v2, and contains results on both perfect secrecy and strong secrecy; v3 is a revised manuscript submitted to the IEEE Transactions on Information Theory in April 201
    • …
    corecore