1,297 research outputs found

    Security Enhancements in Voice Over Ip Networks

    Get PDF
    Voice delivery over IP networks including VoIP (Voice over IP) and VoLTE (Voice over LTE) are emerging as the alternatives to the conventional public telephony networks. With the growing number of subscribers and the global integration of 4/5G by operations, VoIP/VoLTE as the only option for voice delivery becomes an attractive target to be abused and exploited by malicious attackers. This dissertation aims to address some of the security challenges in VoIP/VoLTE. When we examine the past events to identify trends and changes in attacking strategies, we find that spam calls, caller-ID spoofing, and DoS attacks are the most imminent threats to VoIP deployments. Compared to email spam, voice spam will be much more obnoxious and time consuming nuisance for human subscribers to filter out. Since the threat of voice spam could become as serious as email spam, we first focus on spam detection and propose a content-based approach to protect telephone subscribers\u27 voice mailboxes from voice spam. Caller-ID has long been used to enable the callee parties know who is calling, verify his identity for authentication and his physical location for emergency services. VoIP and other packet switched networks such as all-IP Long Term Evolution (LTE) network provide flexibility that helps subscribers to use arbitrary caller-ID. Moreover, interconnecting between IP telephony and other Circuit-Switched (CS) legacy telephone networks has also weakened the security of caller-ID systems. We observe that the determination of true identity of a calling device helps us in preventing many VoIP attacks, such as caller-ID spoofing, spamming and call flooding attacks. This motivates us to take a very different approach to the VoIP problems and attempt to answer a fundamental question: is it possible to know the type of a device a subscriber uses to originate a call? By exploiting the impreciseness of the codec sampling rate in the caller\u27s RTP streams, we propose a fuzzy rule-based system to remotely identify calling devices. Finally, we propose a caller-ID based public key infrastructure for VoIP and VoLTE that provides signature generation at the calling party side as well as signature verification at the callee party side. The proposed signature can be used as caller-ID trust to prevent caller-ID spoofing and unsolicited calls. Our approach is based on the identity-based cryptography, and it also leverages the Domain Name System (DNS) and proxy servers in the VoIP architecture, as well as the Home Subscriber Server (HSS) and Call Session Control Function (CSCF) in the IP Multimedia Subsystem (IMS) architecture. Using OPNET, we then develop a comprehensive simulation testbed for the evaluation of our proposed infrastructure. Our simulation results show that the average call setup delays induced by our infrastructure are hardly noticeable by telephony subscribers and the extra signaling overhead is negligible. Therefore, our proposed infrastructure can be adopted to widely verify caller-ID in telephony networks

    Secure Communication Using Electronic Identity Cards for Voice over IP Communication, Home Energy Management, and eMobility

    Full text link
    Using communication services is a common part of everyday life in a personal or business context. Communication services include Internet services like voice services, chat service, and web 2.0 technologies (wikis, blogs, etc), but other usage areas like home energy management and eMobility are will be increasingly tackled. Such communication services typically authenticate participants. For this identities of some kind are used to identify the communication peer to the user of a service or to the service itself. Calling line identification used in the Session Initiation Protocol (SIP) used for Voice over IP (VoIP) is just one example. Authentication and identification of eCar users for accounting during charging of the eCar is another example. Also, further mechanisms rely on identities, e.g., whitelists defining allowed communication peers. Trusted identities prevent identity spoofing, hence are a basic building block for the protection of communication. However, providing trusted identities in a practical way is still a difficult problem and too often application specific identities are used, making identity handling a hassle. Nowadays, many countries introduced electronic identity cards, e.g., the German "Elektronischer Personalausweis" (ePA). As many German citizens will possess an ePA soon, it can be used as security token to provide trusted identities. Especially new usage areas (like eMobility) should from the start be based on the ubiquitous availability of trusted identities. This paper describes how identity cards can be integrated within three domains: home energy management, vehicle-2-grid communication, and SIP-based voice over IP telephony. In all three domains, identity cards are used to reliably identify users and authenticate participants. As an example for an electronic identity card, this paper focuses on the German ePA

    Toward the PSTN/Internet Inter-Networking--Pre-PINT Implementations

    Get PDF
    This document contains the information relevant to the development of the inter-networking interfaces underway in the Public Switched Telephone Network (PSTN)/Internet Inter-Networking (PINT) Working Group. It addresses technologies, architectures, and several (but by no means all) existing pre-PINT implementations of the arrangements through which Internet applications can request and enrich PSTN telecommunications services. The common denominator of the enriched services (a.k.a. PINT services) is that they combine the Internet and PSTN services in such a way that the Internet is used for non-voice interactions, while the voice (and fax) are carried entirely over the PSTN. One key observation is that the pre-PINT implementations, being developed independently, do not inter-operate. It is a task of the PINT Working Group to define the inter-networking interfaces that will support inter-operation of the future implementations of PINT services

    Prevalent Network Threats and Telecommunication Security Challenges and Countermeasures in VoIP Networks

    Get PDF
    Due to the recent global popularity gained by VoIP network while many organisations/industries are employing it for their voice communication needs, optimal security assurance has to be provided to guarantee security of their data/information against present day teeming security threats and attacks prevalent in IP-based networks. This research paper has critically investigated and analysed most of the security challenges associated with VoIP systems and traditional IP data networks; and has proposed several defence measures which if designed and implemented will prevent most (if not all) of the security threats plaguing these networks. Keywords: Network security, VoIP, Computer attack, Security threats, SIP, H.323, Defence measures, IPSec

    Security aspects in voice over IP systems

    Get PDF
    Security has become a major concern with the rapid growth of interest in the internet. This project deals with the security aspects of VoIP systems. Various supporting protocols and technologies are considered to provide solutions to the security problems. This project stresses on the underlying VoIP protocols like Session Initiation Protocol (SIP), Secure Real-time Transport Procotol (SRTP), H.323 and Media Gateway Control Protocol (MGCP). The project further discusses the Network Address Translation (NAT) devices and firewalls that perform NAT. A firewall provides a point of defense between two networks. This project considers issues regarding the firewalls and the problems faced in using firewalls for VoIP; it further discusses the solutions about how firewalls can be used in a more secured way and how they provide security

    Cryptanalysis and improvement of password-authenticated key agreement for session initiation protocol using smart cards

    Get PDF
    Session Initiation Protocol (SIP) is one of the most commonly used protocols for handling sessions for Voice over Internet Protocol (VoIP)-based communications, and the security of SIP is becoming increasingly important. Recently, Zhang et al. proposed a password authenticated key agreement protocol for SIP by using smart cards to protect the VoIP communications between users. Their protocol provided some unique features, such as mutual authentication, no password table needed, and password updating freely. In this study, we performed cryptanalysis of Zhang et al.'s protocol and found that their protocol was vulnerable to the impersonation attack although the protocol could withstand several other attacks. A malicious attacker could compute other users’ privacy keys and then impersonated the users to cheat the SIP server. Furthermore, we proposed an improved password authentication key agreement protocol for SIP, which overcame the weakness of Zhang et al.’s protocol and was more suitable for VoIP communications
    • …
    corecore