72,916 research outputs found

    Adaptive cross-device videoconferencing solution for wireless networks based on QoS monitoring

    Full text link
    The increase in CPU power and screen quality of todays smartphones as well as the availability of high bandwidth wireless networks has enabled high quality mobile videoconfer- encing never seen before. However, adapting to the variety of devices and network conditions that come as a result is still not a trivial issue. In this paper, we present a multiple participant videoconferencing service that adapts to different kind of devices and access networks while providing an stable communication. By combining network quality detection and the use of a multipoint control unit for video mixing and transcoding, desktop, tablet and mobile clients can participate seamlessly. We also describe the cost in terms of bandwidth and CPU usage of this approach in a variety of scenarios

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    Supporting service discovery, querying and interaction in ubiquitous computing environments.

    Get PDF
    In this paper, we contend that ubiquitous computing environments will be highly heterogeneous, service rich domains. Moreover, future applications will consequently be required to interact with multiple, specialised service location and interaction protocols simultaneously. We argue that existing service discovery techniques do not provide sufficient support to address the challenges of building applications targeted to these emerging environments. This paper makes a number of contributions. Firstly, using a set of short ubiquitous computing scenarios we identify several key limitations of existing service discovery approaches that reduce their ability to support ubiquitous computing applications. Secondly, we present a detailed analysis of requirements for providing effective support in this domain. Thirdly, we provide the design of a simple extensible meta-service discovery architecture that uses database techniques to unify service discovery protocols and addresses several of our key requirements. Lastly, we examine the lessons learnt through the development of a prototype implementation of our architecture

    MADServer: An Architecture for Opportunistic Mobile Advanced Delivery

    Get PDF
    Rapid increases in cellular data traffic demand creative alternative delivery vectors for data. Despite the conceptual attractiveness of mobile data offloading, no concrete web server architectures integrate intelligent offloading in a production-ready and easily deployable manner without relying on vast infrastructural changes to carriers’ networks. Delay-tolerant networking technology offers the means to do just this. We introduce MADServer, a novel DTN-based architecture for mobile data offloading that splits web con- tent among multiple independent delivery vectors based on user and data context. It enables intelligent data offload- ing, caching, and querying solutions which can be incorporated in a manner that still satisfies user expectations for timely delivery. At the same time, it allows for users who have poor or expensive connections to the cellular network to leverage multi-hop opportunistic routing to send and receive data. We also present a preliminary implementation of MADServer and provide real-world performance evaluations

    First experiences with Personal Networks as an enabling platform for service providers

    Get PDF
    By developing demonstrators and performing small-scale user trials, we found various opportunities and pitfalls for deploying personal networks (PNs) on a commercial basis. The demonstrators were created using as many as possible legacy devices and proven technologies. They deal with applications in the health sector, home services, tourism, and the transportation sector. This paper describes the various architectures and our experiences with the end users and the technology. We conclude that context awareness, service discovery, and content management are very important in PNs and that a personal network provider role is necessary to realize these functions under the assumptions we made. The PNPay Travel demonstrator suggests that PN service platforms provide an opportunity to develop true trans-sector services
    • 

    corecore