52,990 research outputs found

    Analysis and implementation of the Large Scale Video-on-Demand System

    Full text link
    Next Generation Network (NGN) provides multimedia services over broadband based networks, which supports high definition TV (HDTV), and DVD quality video-on-demand content. The video services are thus seen as merging mainly three areas such as computing, communication, and broadcasting. It has numerous advantages and more exploration for the large-scale deployment of video-on-demand system is still needed. This is due to its economic and design constraints. It's need significant initial investments for full service provision. This paper presents different estimation for the different topologies and it require efficient planning for a VOD system network. The methodology investigates the network bandwidth requirements of a VOD system based on centralized servers, and distributed local proxies. Network traffic models are developed to evaluate the VOD system's operational bandwidth requirements for these two network architectures. This paper present an efficient estimation of the of the bandwidth requirement for the different architectures.Comment: 9 pages, 8 figure

    Satellite-enabled interactive education: scenarios and systems architectures

    Get PDF
    There are specific sectors of the economy that can benefit from satellite-based tele-education. Areas, such as maritime and agriculture, share common needs for both broadband connectivity at remote geographical areas that cannot otherwise be covered, and for innovative content for tele-education purposes. Furthermore, each area has special requirements with regard to the type of content to be delivered. In this paper we propose a set of architectural designs and case scenarios that will realise such interactive end-to-end education systems based on satellite communications. Services requirements in this setting are also identified and discussed

    Satellite-based delivery of educational content to geographically isolated communities: A service based approach

    Get PDF
    Enabling learning for members of geographically isolated communities presents benefits in terms of promoting regional development and cost savings for governments and companies. However, notwithstanding recent advances in e-Learning, from both technological and pedagogical perspectives, there are very few, if any, recognised methodologies for user-led design of satellite-based e-learning infrastructures. In this paper, we present a methodology for designing a satellite and wireless based network infrastructure and learning services to support distance learning for such isolated communities. This methodology entails (a) the involvement of community members in the development of targeted learning services from an early stage, and (b) a service-oriented approach to learning solution deployment. Results show, that, while the technological premises of distance learning can be accommodated by hybrid satellite/wireless infrastructures,this has to be complemented with (a) high-quality audio–visual educational material, and (b) the opportunity for community members to interact with other community members either as groups (common-room oriented scenarios) or individuals (home-based scenarios), thus providing an impetus for learner engagement in both formal and informal activities

    A cross-layer approach to enhance QoS for multimedia applications over satellite

    Get PDF
    The need for on-demand QoS support for communications over satellite is of primary importance for distributed multimedia applications. This is particularly true for the return link which is often a bottleneck due to the large set of end-users accessing a very limited uplink resource. Facing this need, Demand Assignment Multiple Access (DAMA) is a classical technique that allows satellite operators to offer various types of services, while managing the resources of the satellite system efficiently. Tackling the quality degradation and delay accumulation issues that can result from the use of these techniques, this paper proposes an instantiation of the Application Layer Framing (ALF) approach, using a cross-layer interpreter(xQoS-Interpreter). The information provided by this interpreter is used to manage the resource provided to a terminal by the satellite system in order to improve the quality of multimedia presentations from the end users point of view. Several experiments are carried out for different loads on the return link. Their impact on QoS is measured through different application as well as network level metrics

    ICE: Enabling Non-Experts to Build Models Interactively for Large-Scale Lopsided Problems

    Full text link
    Quick interaction between a human teacher and a learning machine presents numerous benefits and challenges when working with web-scale data. The human teacher guides the machine towards accomplishing the task of interest. The learning machine leverages big data to find examples that maximize the training value of its interaction with the teacher. When the teacher is restricted to labeling examples selected by the machine, this problem is an instance of active learning. When the teacher can provide additional information to the machine (e.g., suggestions on what examples or predictive features should be used) as the learning task progresses, then the problem becomes one of interactive learning. To accommodate the two-way communication channel needed for efficient interactive learning, the teacher and the machine need an environment that supports an interaction language. The machine can access, process, and summarize more examples than the teacher can see in a lifetime. Based on the machine's output, the teacher can revise the definition of the task or make it more precise. Both the teacher and the machine continuously learn and benefit from the interaction. We have built a platform to (1) produce valuable and deployable models and (2) support research on both the machine learning and user interface challenges of the interactive learning problem. The platform relies on a dedicated, low-latency, distributed, in-memory architecture that allows us to construct web-scale learning machines with quick interaction speed. The purpose of this paper is to describe this architecture and demonstrate how it supports our research efforts. Preliminary results are presented as illustrations of the architecture but are not the primary focus of the paper
    • 

    corecore