150 research outputs found

    Resilient network design: Challenges and future directions

    Get PDF
    This paper highlights the complexity and challenges of providing reliable services in the evolving communications infrastructure. The hurdles in providing end-to-end availability guarantees are discussed and research problems identified. Avenues for overcoming some of the challenges examined are presented. This includes the use of a highly available network spine embedded in a physical network together with efficient crosslayer mapping to offer survivability and differentiation of traffic into classes of resilience. © 2013 Springer Science+Business Media New York

    Control logic distribution trade-offs in software-defined wireless networks

    Get PDF
    The SDN (Software-Defined Networks) architecture separates the data and the control planes of the networks. It logically centralizes the control of a network in a central point that is an SDN controller, which acts as a brain of the network and is in charge of telling each network node how to forward incoming packets by installing the appropriate forwarding rules. One of the main advantages it brings is programmability through this single entity (the logical controller) with which network management applications must interact to apply their policies. Through agreed-upon APIs, the network managers can exploit the full potential of SDN. SDN generally assumes ideal control channels between the SDN controller and the network nodes, which may not be the case in challenging environments that are becoming more common due to dense deployment of small cells (SCs) with reduced coverage in 5G and beyond 5G deployments. In 5G and beyond 5G use cases, cost-effective wireless transport networks are required to connect the SCs. In this context, mmWave technology is a good player to connect the SCs as mmWave provides larger radio spectrum chunks that in turn provide larger bandwidth and higher data rate. To manage the dense deployment of SCs in the mobile networks, on the network management/control front, network programmability and virtualization are also an integral part of 5G and beyond 5G networks. In this regard, to provide end-to-end connectivity, management and orchestration of all the segments of the networks ranging from RAN (Radio Access Network), transport network to the core is vital. On the transport networks side (the main focus of the dissertation), SDN plays an important role as SDN enables programmability and virtualization in the network. Though SDN Provides huge flexibility in network management by splitting the control plane from the data plane, it has some limitations in wireless networks context as separation of the control plane from the data plane introduce the extra points of failure in the SDN paradigm (e.g., control communication channel failure, SDN controller failure). In the wide-area networks (WAN) scenarios where in-band channels (e.g., microwave or mmWave links) are responsible to carry control traffic between the forwarding nodes and the SDN controller, the assumption of the availability of a reliable network may not be possible as the performance of the wireless link changes with the environmental conditions, which leads to a high risk of experiencing channel impairments, which might cause centralized SDN operation failure by affecting communication between the transport component of SCs and the SDN controller. To overcome SDN from failure, the dissertation presents a hybrid SDN scheme that explores the benefits of centralized and distributed operations depending on control communication channel conditions. Our hybrid SDN approach combines both centralized and distributed modes in the same node to form a hybrid control plane architecture. We introduce a local agent in the node that is composed of a monitoring framework to detect reliability of the control communication channel and a decision module that conceive a novel control logic switching algorithm to make a decision whether to operate in a centralized or distributed mode. We evaluate the proposed solution under a variety of unreliable network conditions (e.g., link impairments, control packet loss) to investigate the operational performance of the hybrid SDN during high loss conditions. The experimental results show that the proposed hybrid SDN solution substantially improves the aggregated throughput, particularly when control channel packet loss ratios increase, which in turn keeps the network operational in hard conditions where the centralized SDN would result in a non-operational network.La arquitectura SDN (Software-Defined Networks) separa los planos de datos y control de las redes. Centraliza lógicamente el control de una red en un controlador SDN. Una de las principales ventajas que aporta es la programabilidad a través de esta única entidad (el controlador lógico) con la que las aplicaciones de gestión de red deben interactuar para aplicar sus políticas. SDN generalmente asume canales de control ideales entre el controlador SDN y los nodos de la red, lo que puede no ser el caso en entornos inalámbricos (o menos estables) que se están volviendo más comunes debido al despliegue denso de celdas pequeñas (SC) con cobertura reducida en 5G (y más allá). En los casos de uso de futuras redes, se requieren redes de transporte inalámbricas rentables para conectar los SC. En este contexto, la tecnología mmWave es apropiada para conectar las SC, ya que mmWave proporciona fragmentos de espectro más grandes que, a su vez, proporcionan un mayor ancho de banda y una mayor velocidad de datos. Para administrar el despliegue denso de SC en redes móviles, se requiere administración/control de la red, de la virtualización y de la programabilidad de la red, ay que son parte integral de las redes 5G/6G. En este sentido, para proporcionar conectividad de extremo a extremo, es vital la gestión y la orquestación de todos los segmentos de red que van desde la RAN (Red de acceso radio), la red de transporte hasta el núcleo de la red. Por lo que respecte a las redes de transporte (el enfoque principal de la tesis), SDN juega un papel importante ya que SDN permite la programabilidad y la virtualización en la red. Aunque SDN proporciona una gran flexibilidad en la gestión de redes al dividir el plano de control del plano de datos, tiene algunas limitaciones en el contexto de las redes inalámbricas, ya que la separación del plano de control del plano de datos introduce puntos adicionales de fallo en el paradigma SDN (p. ej., fallo del canal de comunicación, fallo del controlador SDN). En los escenarios de redes de área extendida (WAN) donde los canales en-banda (p. ej., enlaces de microondas o mmWave) son responsables de transportar el tráfico de control entre los nodos de red y el controlador SDN, la suposición de la disponibilidad de una red confiable puede no ser posible, ya que el rendimiento del enlace inalámbrico cambia con las condiciones ambientales, lo que conduce a un alto riesgo de experimentar deterioros en el canal, lo que podría causar errores en la operación SDN centralizada al afectar la comunicación entre el componente de transporte de los SC y el controlador SDN. Para superar estos problemas de SDN, la tesis presenta un esquema de SDN híbrido que explora los beneficios de las operaciones centralizadas y distribuidas según sean las condiciones del canal de comunicación de control. Nuestro enfoque SDN híbrido combina los modos centralizados y distribuidos en el mismo nodo para formar una arquitectura de plano de control híbrido. Introducimos un agente local en el nodo que se compone de un marco de monitorización para detectar la confiabilidad del canal de comunicación de control y un módulo de decisión que concibe un algoritmo de conmutación de lógica de control novedoso para tomar la decisión de operar en un modo centralizado o distribuido. Evaluamos la solución propuesta bajo una variedad de condiciones de red poco confiables (p. ej., deterioros de enlace, pérdida de paquetes de control) para investigar el rendimiento operativo de la SDN híbrida durante condiciones de alta pérdida. Los resultados experimentales muestran que la solución SDN híbrida propuesta mejora sustancialmente el rendimiento agregado, particularmente cuando aumentan las tasas de pérdida de paquetes del canal de control, lo que a su vez mantiene la red operativa en condiciones difíciles donde la SDN centralizada daría como resultado una red no operativa.Postprint (published version

    Project BeARCAT : Baselining, Automation and Response for CAV Testbed Cyber Security : Connected Vehicle & Infrastructure Security Assessment

    Get PDF
    Connected, software-based systems are a driver in advancing the technology of transportation systems. Advanced automated and autonomous vehicles, together with electrification, will help reduce congestion, accidents and emissions. Meanwhile, vehicle manufacturers see advanced technology as enhancing their products in a competitive market. However, as many decades of using home and enterprise computer systems have shown, connectivity allows a system to become a target for criminal intentions. Cyber-based threats to any system are a problem; in transportation, there is the added safety implication of dealing with moving vehicles and the passengers within

    Satellite integration in 5G : contribution on network architectures and traffic engineering solutions for hybrid satellite-terrestrial mobile backhauling

    Get PDF
    The recent technological advances in the satellite domain such as the use of High Throughput Satellites (HTS) with throughput rates that are magnitudes higher than with previous ones, or the use of large non- Geostationary Earth Orbit (GEO) satellites constellations, etc, are reducing the price per bit and enhancing the Quality of Service (QoS) metrics such as latency, etc., changing the way that the capacity is being brought to the market and making it more attractive for other services such as satellite broadband communications. These new capabilities coupled with the advantages offered by satellite communications such as the unique wide-scale geographical coverage, inherent broadcast/multicast capabilities and highly reliable connectivity, anticipate new opportunities for the integration of the satellite component into the 5G ecosystem. One of the most compelling scenarios is mobile backhauling, where satellite capacity can be used to complement the terrestrial backhauling infrastructure, not only in hard to reach areas, but also for more efficient traffic delivery to Radio Access Network (RAN) nodes, increased resiliency and better support for fast, temporary cell deployments and moving cells. In this context, this thesis work focuses on achieving better satellite-terrestrial backhaul network integration through the development of Traffic Engineering (TE) strategies to manage in a better way the dynamically steerable satellite provisioned capacity. To do this, this thesis work first takes the steps in the definition of an architectural framework that enables a better satellite-terrestrial mobile backhaul network integration, managing the satellite capacity as a constituent part of a Software Defined Networking (SDN) -based TE for mobile backhaul network. Under this basis, this thesis work first proposes and assesses a model for the analysis of capacity and traffic management strategies for hybrid satellite-terrestrial mobile backhauling networks that rely on SDN for fine-grained traffic steering. The performance analysis is carried out in terms of capacity gains that can be achieved when the satellite backhaul capacity is used for traffic overflow, taking into account the placement of the satellite capacity at different traffic aggregation levels and considering a spatial correlation of the traffic demand. Later, the thesis work presents the development of SDN-based TE strategies and algorithms that exploits the dynamically steerable satellite capacity provisioned for resilience purposes to better utilize the satellite capacity by maximizing the network utility under both failure and non-failure conditions in some terrestrial links, under the consideration of elastic, inelastic and unicast and multicast traffic. The performance analysis is carried out in terms of global network utility, fairness and connexion rejection rates compared to non SDN-based TE applications. Finally, sustained in the defined architectural framework designs, the thesis work presents an experimental Proof of Concept (PoC) and validation of a satellite-terrestrial backhaul links integration solution that builts upon SDN technologies for the realization of End-to-End (E2E) TE applications in mobile backhauling networks with a satellite component, assessing the feasibility of the proposed SDN-based integration solution under a practical laboratory setting that combines the use of commercial, experimentation-oriented and emulation equipment and software.Los recientes avances tecnológicos en el dominio de los satélites, como el uso de satélites de alto rendimiento (HTS) con tasas de rendimiento que son magnitudes más altas que los anteriores, o el uso de grandes constelaciones de satélites de órbita no geoestacionaria (GEO), etc. están reduciendo el precio por bit y mejorando las métricas de Calidad de Servicio (QoS) como la latencia, etc., cambiando la forma en que la capacidad se está llevando al mercado, y haciéndola más atractiva para otros servicios como las comunicaciones de banda ancha por satélite. Estas nuevas capacidades, junto con las ventajas ofrecidas por las comunicaciones por satélite, como la cobertura geográfica a gran escala, las inherentes capacidades de difusión / multidifusión y la conectividad altamente confiable, anticipan nuevas oportunidades para la integración de la componente satelital al ecosistema 5G. Uno de los escenarios más atractivos es el backhauling móvil, donde la capacidad del satélite se puede usar para complementar la infraestructura de backhauling terrestre, no solo en áreas de difícil acceso, sino también para la entrega de tráfico de manera más eficiente a los nodos de la Red de Acceso (RAN), una mayor resiliencia y mejor soporte para implementaciones rápidas y temporales de células, así como células en movimiento. En este contexto, este trabajo de tesis se centra en lograr una mejor integración de la red híbrida de backhaul satélital-terrestre, a través del desarrollo de estrategias de ingeniería de tráfico (TE) para gestionar de una mejor manera la capacidad dinámicamente orientable del satélite. Para hacer esto, este trabajo de tesis primero toma los pasos en la definición de un marco de arquitectura que permite una mejor integración de una red híbrida satelital-terrestre de backhaul móvil, gestionando la capacidad del satélite como parte constitutiva de un TE basado en Software Defined Networking (SDN). Bajo esta base, este trabajo de tesis primero propone y evalúa un modelo para el análisis de la capacidad y las estrategias de gestión del tráfico para redes híbridas satelital-terrestre de backhaul móvil basadas en SDN para la dirección de tráfico. El análisis de rendimiento se lleva a cabo en términos de aumento de capacidad que se puede lograr cuando la capacidad de la red de backhaul por satélite se utiliza para el desborde de tráfico, teniendo en cuenta la ubicación de la capacidad del satélite en diferentes niveles de agregación de tráfico y considerando una correlación espacial de la demanda de tráfico. Posteriormente, el trabajo de tesis presenta el desarrollo de estrategias y algoritmos de TE basados en SDN que explotan la capacidad dinámicamente orientable del satelite, provista con fines de resiliencia para utilizar de mejor manera la capacidad satelital al maximizar la utilidad de red en condiciones de falla y no falla en algunos enlaces terrestres, y bajo la consideración de tráfico elástico, inelástico y de unidifusión y multidifusión. El análisis de rendimiento se lleva a cabo en términos de tasas de rechazo, de utilidad, y equidad en comparación con las aplicaciones de TE no basadas en SDN. Finalmente, basado en la definición del diseño de marco de arquitectura, el trabajo de tesis presenta una Prueba de concepto (PoC) experimental y la validación de una solución de integración de enlaces de backhaul satelital-terrestre que se basa en las tecnologías SDN para la realización de aplicaciones de TE de extremo a extremo (E2E) en redes de backhaul móviles, evaluando la viabilidad de la solución propuesta de integración basada en SDN en un entorno práctico de laboratorio que combina el uso de equipos y software comerciales, orientados a la experimentación y emulación.Postprint (published version

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Managed access dependability for critical services in wireless inter domain environment

    Get PDF
    The Information and Communications Technology (ICT) industry has through the last decades changed and still continues to affect the way people interact with each other and how they access and share information, services and applications in a global market characterized by constant change and evolution. For a networked and highly dynamic society, with consumers and market actors providing infrastructure, networks, services and applications, the mutual dependencies of failure free operations are getting more and more complex. Service Level Agreements (SLAs) between the various actors and users may be used to describe the offerings along with price schemes and promises regarding the delivered quality. However, there is no guarantee for failure free operations whatever efforts and means deployed. A system fails for a number of reasons, but automatic fault handling mechanisms and operational procedures may be used to decrease the probability for service interruptions. The global number of mobile broadband Internet subscriptions surpassed the number of broadband subscriptions over fixed technologies in 2010. The User Equipment (UE) has become a powerful device supporting a number of wireless access technologies and the always best connected opportunities have become a reality. Some services, e.g. health care, smart power grid control, surveillance/monitoring etc. called critical services in this thesis, put high requirements on service dependability. A definition of dependability is the ability to deliver services that can justifiably be trusted. For critical services, the access networks become crucial factors for achieving high dependability. A major challenge in a multi operator, multi technology wireless environment is the mobility of the user that necessitates handovers according to the physical movement. In this thesis it is proposed an approach for how to optimize the dependability for critical services in multi operator, multi technology wireless environment. This approach allows predicting the service availability and continuity at real-time. Predictions of the optimal service availability and continuity are considered crucial for critical services. To increase the dependability for critical services dual homing is proposed where the use of combinations of access points, possibly owned by different operators and using different technologies, are optimized for the specific location and movement of the user. A central part of the thesis is how to ensure the disjointedness of physical and logical resources so important for utilizing the dependability increase potential with dual homing. To address the interdependency issues between physical and logical resources, a study of Operations, Administrations, and Maintenance (OA&M) processes related to the access network of a commercial Global System for Mobile Communications (GSM)/Universal Mobile Telecommunications System (UMTS) operator was performed. The insight obtained by the study provided valuable information of the inter woven dependencies between different actors in the delivery chain of services. Based on the insight gained from the study of OA&M processes a technological neutral information model of physical and logical resources in the access networks is proposed. The model is used for service availability and continuity prediction and to unveil interdependencies between resources for the infrastructure. The model is proposed as an extension of the Media Independent Handover (MIH) framework. A field trial in a commercial network was conducted to verify the feasibility in retrieving the model related information from the operators' Operational Support Systems (OSSs) and to emulate the extension and usage of the MIH framework. In the thesis it is proposed how measurement reports from UE and signaling in networks are used to define virtual cells as part of the proposed extension of the MIH framework. Virtual cells are limited geographical areas where the radio conditions are homogeneous. Virtual cells have radio coverage from a number of access points. A Markovian model is proposed for prediction of the service continuity of a dual homed critical service, where both the infrastructure and radio links are considered. A dependability gain is obtained by choosing a global optimal sequence of access points. Great emphasizes have been on developing computational e cient techniques and near-optimal solutions considered important for being able to predict service continuity at real-time for critical services. The proposed techniques to obtain the global optimal sequence of access points may be used by handover and multi homing mechanisms/protocols for timely handover decisions and access point selections. With the proposed extension of the MIH framework a global optimal sequence of access points providing the highest reliability may be predicted at real-time
    corecore