9,756 research outputs found

    A Linked Data Approach to Sharing Workflows and Workflow Results

    No full text
    A bioinformatics analysis pipeline is often highly elaborate, due to the inherent complexity of biological systems and the variety and size of datasets. A digital equivalent of the ‘Materials and Methods’ section in wet laboratory publications would be highly beneficial to bioinformatics, for evaluating evidence and examining data across related experiments, while introducing the potential to find associated resources and integrate them as data and services. We present initial steps towards preserving bioinformatics ‘materials and methods’ by exploiting the workflow paradigm for capturing the design of a data analysis pipeline, and RDF to link the workflow, its component services, run-time provenance, and a personalized biological interpretation of the results. An example shows the reproduction of the unique graph of an analysis procedure, its results, provenance, and personal interpretation of a text mining experiment. It links data from Taverna, myExperiment.org, BioCatalogue.org, and ConceptWiki.org. The approach is relatively ‘light-weight’ and unobtrusive to bioinformatics users

    Chemical information matters: an e-Research perspective on information and data sharing in the chemical sciences

    No full text
    Recently, a number of organisations have called for open access to scientific information and especially to the data obtained from publicly funded research, among which the Royal Society report and the European Commission press release are particularly notable. It has long been accepted that building research on the foundations laid by other scientists is both effective and efficient. Regrettably, some disciplines, chemistry being one, have been slow to recognise the value of sharing and have thus been reluctant to curate their data and information in preparation for exchanging it. The very significant increases in both the volume and the complexity of the datasets produced has encouraged the expansion of e-Research, and stimulated the development of methodologies for managing, organising, and analysing "big data". We review the evolution of cheminformatics, the amalgam of chemistry, computer science, and information technology, and assess the wider e-Science and e-Research perspective. Chemical information does matter, as do matters of communicating data and collaborating with data. For chemistry, unique identifiers, structure representations, and property descriptors are essential to the activities of sharing and exchange. Open science entails the sharing of more than mere facts: for example, the publication of negative outcomes can facilitate better understanding of which synthetic routes to choose, an aspiration of the Dial-a-Molecule Grand Challenge. The protagonists of open notebook science go even further and exchange their thoughts and plans. We consider the concepts of preservation, curation, provenance, discovery, and access in the context of the research lifecycle, and then focus on the role of metadata, particularly the ontologies on which the emerging chemical Semantic Web will depend. Among our conclusions, we present our choice of the "grand challenges" for the preservation and sharing of chemical information

    myTea: Connecting the Web to Digital Science on the Desktop

    No full text
    Bioinformaticians regularly access the hundreds of databases and tools that are available to them on the Web. None of these tools communicate with each other, causing the scientist to copy results manually from a Web site into a spreadsheet or word processor. myGrids' Taverna has made it possible to create templates (workflows) that automatically run searches using these databases and tools, cutting down what previously took days of work into hours, and enabling the automated capture of experimental details. What is still missing in the capture process, however, is the details of work done on that material once it moves from the Web to the desktop: if a scientist runs a process on some data, there is nothing to record why that action was taken; it is likewise not easy to publish a record of this process back to the community on the Web. In this paper, we present a novel interaction framework, built on Semantic Web technologies, and grounded in usability design practice, in particular the Making Tea method. Through this work, we introduce a new model of practice designed specifically to (1) support the scientists' interactions with data from the Web to the desktop, (2) provide automatic annotation of process to capture what has previously been lost and (3) associate provenance services automatically with that data in order to enable meaningful interrogation of the process and controlled sharing of the results

    Towards structured sharing of raw and derived neuroimaging data across existing resources

    Full text link
    Data sharing efforts increasingly contribute to the acceleration of scientific discovery. Neuroimaging data is accumulating in distributed domain-specific databases and there is currently no integrated access mechanism nor an accepted format for the critically important meta-data that is necessary for making use of the combined, available neuroimaging data. In this manuscript, we present work from the Derived Data Working Group, an open-access group sponsored by the Biomedical Informatics Research Network (BIRN) and the International Neuroimaging Coordinating Facility (INCF) focused on practical tools for distributed access to neuroimaging data. The working group develops models and tools facilitating the structured interchange of neuroimaging meta-data and is making progress towards a unified set of tools for such data and meta-data exchange. We report on the key components required for integrated access to raw and derived neuroimaging data as well as associated meta-data and provenance across neuroimaging resources. The components include (1) a structured terminology that provides semantic context to data, (2) a formal data model for neuroimaging with robust tracking of data provenance, (3) a web service-based application programming interface (API) that provides a consistent mechanism to access and query the data model, and (4) a provenance library that can be used for the extraction of provenance data by image analysts and imaging software developers. We believe that the framework and set of tools outlined in this manuscript have great potential for solving many of the issues the neuroimaging community faces when sharing raw and derived neuroimaging data across the various existing database systems for the purpose of accelerating scientific discovery

    Semantic Description, Publication and Discovery of Workflows in myGrid

    No full text
    The bioinformatics scientific process relies on in silico experiments, which are experiments executed in full in a computational environment. Scientists wish to encode the designs of these experiments as workflows because they provide minimal, declarative descriptions of the designs, overcoming many barriers to the sharing and re-use of these designs between scientists and enable the use of the most appropriate services available at any one time. We anticipate that the number of workflows will increase quickly as more scientists begin to make use of existing workflow construction tools to express their experiment designs. Discovery then becomes an increasingly hard problem, as it becomes more difficult for a scientist to identify the workflows relevant to their particular research goals amongst all those on offer. While many approaches exist for the publishing and discovery of services, there have been few attempts to address where and how authors of experimental designs should advertise the availability of their work or how relevant workflows can be discovered with minimal effort from the user. As the users designing and adapting experiments will not necessarily have a computer science background, we also have to consider how publishing and discovery can be achieved in such a way that they are not required to have detailed technical knowledge of workflow scripting languages. Furthermore, we believe they should be able to make use of others' expert knowledge (the semantics) of the given scientific domain. In this paper, we define the issues related to the semantic description, publishing and discovery of workflows, and demonstrate how the architecture created by the myGrid project aids scientists in this process. We give a walk-through of how users can construct, publish, annotate, discover and enact workflows via the user interfaces of the myGrid architecture; we then describe novel middleware protocols, making use of the Semantic Web technologies RDF and OWL to support workflow publishing and discovery
    corecore