19,658 research outputs found

    bdbms -- A Database Management System for Biological Data

    Full text link
    Biologists are increasingly using databases for storing and managing their data. Biological databases typically consist of a mixture of raw data, metadata, sequences, annotations, and related data obtained from various sources. Current database technology lacks several functionalities that are needed by biological databases. In this paper, we introduce bdbms, an extensible prototype database management system for supporting biological data. bdbms extends the functionalities of current DBMSs to include: (1) Annotation and provenance management including storage, indexing, manipulation, and querying of annotation and provenance as first class objects in bdbms, (2) Local dependency tracking to track the dependencies and derivations among data items, (3) Update authorization to support data curation via content-based authorization, in contrast to identity-based authorization, and (4) New access methods and their supporting operators that support pattern matching on various types of compressed biological data types. This paper presents the design of bdbms along with the techniques proposed to support these functionalities including an extension to SQL. We also outline some open issues in building bdbms.Comment: This article is published under a Creative Commons License Agreement (http://creativecommons.org/licenses/by/2.5/.) You may copy, distribute, display, and perform the work, make derivative works and make commercial use of the work, but, you must attribute the work to the author and CIDR 2007. 3rd Biennial Conference on Innovative Data Systems Research (CIDR) January 710, 2007, Asilomar, California, US

    Automatic vs Manual Provenance Abstractions: Mind the Gap

    Full text link
    In recent years the need to simplify or to hide sensitive information in provenance has given way to research on provenance abstraction. In the context of scientific workflows, existing research provides techniques to semi automatically create abstractions of a given workflow description, which is in turn used as filters over the workflow's provenance traces. An alternative approach that is commonly adopted by scientists is to build workflows with abstractions embedded into the workflow's design, such as using sub-workflows. This paper reports on the comparison of manual versus semi-automated approaches in a context where result abstractions are used to filter report-worthy results of computational scientific analyses. Specifically; we take a real-world workflow containing user-created design abstractions and compare these with abstractions created by ZOOM UserViews and Workflow Summaries systems. Our comparison shows that semi-automatic and manual approaches largely overlap from a process perspective, meanwhile, there is a dramatic mismatch in terms of data artefacts retained in an abstracted account of derivation. We discuss reasons and suggest future research directions.Comment: Preprint accepted to the 2016 workshop on the Theory and Applications of Provenance, TAPP 201

    Labeling Workflow Views with Fine-Grained Dependencies

    Get PDF
    This paper considers the problem of efficiently answering reachability queries over views of provenance graphs, derived from executions of workflows that may include recursion. Such views include composite modules and model fine-grained dependencies between module inputs and outputs. A novel view-adaptive dynamic labeling scheme is developed for efficient query evaluation, in which view specifications are labeled statically (i.e. as they are created) and data items are labeled dynamically as they are produced during a workflow execution. Although the combination of fine-grained dependencies and recursive workflows entail, in general, long (linear-size) data labels, we show that for a large natural class of workflows and views, labels are compact (logarithmic-size) and reachability queries can be evaluated in constant time. Experimental results demonstrate the benefit of this approach over the state-of-the-art technique when applied for labeling multiple views.Comment: VLDB201

    Sciunits: Reusable Research Objects

    Full text link
    Science is conducted collaboratively, often requiring knowledge sharing about computational experiments. When experiments include only datasets, they can be shared using Uniform Resource Identifiers (URIs) or Digital Object Identifiers (DOIs). An experiment, however, seldom includes only datasets, but more often includes software, its past execution, provenance, and associated documentation. The Research Object has recently emerged as a comprehensive and systematic method for aggregation and identification of diverse elements of computational experiments. While a necessary method, mere aggregation is not sufficient for the sharing of computational experiments. Other users must be able to easily recompute on these shared research objects. In this paper, we present the sciunit, a reusable research object in which aggregated content is recomputable. We describe a Git-like client that efficiently creates, stores, and repeats sciunits. We show through analysis that sciunits repeat computational experiments with minimal storage and processing overhead. Finally, we provide an overview of sharing and reproducible cyberinfrastructure based on sciunits gaining adoption in the domain of geosciences
    • …
    corecore