8 research outputs found

    Towards Innovative Healthcare Grid Solutions: ViroLab - A Virtual Laboratory for Infectious Diseases

    Get PDF
    With more rare and critical diseases, medical diagnoses and disease prevention constitutes one of the challenging and at the same time most difficult fields in modern health care. Using interdisciplinary approaches where different areas of research such as biology, chemistry, mathematics, and computer science meet together in order to analyze, understand and reconstruct complex medical processes, those projects typically achieve excellent research results but are inefficient and unfeasible for daily medical workflows. The EU funded project ViroLab should address this important issue by combining different scientists together into one project in order to design and develop a working platform for researchers and especially for doctors, which facilitates medical knowledge discovery and decision support for HIV drug resistance for daily clinical usage. In this paper, we will present the overall concept of the ViroLab project. The core functionalities will be described in detail and shall give the readers an idea of an innovative system for disease prevention, diagnosis and treatment based on integrated biomedical data and information on several levels

    A service-oriented Grid environment with on-demand QoS support

    Get PDF
    Grid Computing entstand aus der Vision für eine neuartige Recheninfrastruktur, welche darauf abzielt, Rechenkapazität so einfach wie Elektrizität im Stromnetz (power grid) verfügbar zu machen. Der entsprechende Zugriff auf global verteilte Rechenressourcen versetzt Forscher rund um den Globus in die Lage, neuartige Herausforderungen aus Wissenschaft und Technik in beispiellosem Ausmaß in Angriff zu nehmen. Die rasanten Entwicklungen im Grid Computing begünstigten auch Standardisierungsprozesse in Richtung Harmonisierung durch Service-orientierte Architekturen und die Anwendung kommerzieller Web Services Technologien. In diesem Kontext ist auch die Sicherung von Qualität bzw. entsprechende Vereinbarungen über die Qualität eines Services (QoS) wichtig, da diese vor allem für komplexe Anwendungen aus sensitiven Bereichen, wie der Medizin, unumgänglich sind. Diese Dissertation versucht zur Entwicklung im Grid Computing beizutragen, indem eine Grid Umgebung mit Unterstützung für QoS vorgestellt wird. Die vorgeschlagene Grid Umgebung beinhaltet eine sichere Service-orientierte Infrastruktur, welche auf Web Services Technologien basiert, sowie bedarfsorientiert und automatisiert HPC Anwendungen als Grid Services bereitstellen kann. Die Grid Umgebung zielt auf eine kommerzielle Nutzung ab und unterstützt ein durch den Benutzer initiiertes, fallweises und dynamisches Verhandeln von Serviceverträgen (SLAs). Das Design der QoS Unterstützung ist generisch, jedoch berücksichtigt die Implementierung besonders die Anforderungen von rechenintensiven und zeitkritischen parallelen Anwendungen, bzw. Garantien f¨ur deren Ausführungszeit und Preis. Daher ist die QoS Unterstützung auf Reservierung, anwendungsspezifische Abschätzung und Preisfestsetzung von Ressourcen angewiesen. Eine entsprechende Evaluation demonstriert die Möglichkeiten und das rationale Verhalten der QoS Infrastruktur. Die Grid Infrastruktur und insbesondere die QoS Unterstützung wurde in Forschungs- und Entwicklungsprojekten der EU eingesetzt, welche verschiedene Anwendungen aus dem medizinischen und bio-medizinischen Bereich als Services zur Verfügung stellen. Die EU Projekte GEMSS und Aneurist befassen sich mit fortschrittlichen HPC Anwendungen und global verteilten Daten aus dem Gesundheitsbereich, welche durch Virtualisierungstechniken als Services angeboten werden. Die Benutzung von Gridtechnologie als Basistechnologie im Gesundheitswesen ermöglicht Forschern und Ärzten die Nutzung von Grid Services in deren Arbeitsumfeld, welche letzten Endes zu einer Verbesserung der medizinischen Versorgung führt.Grid computing emerged as a vision for a new computing infrastructure that aims to make computing resources available as easily as electric power through the power grid. Enabling seamless access to globally distributed IT resources allows dispersed users to tackle large-scale problems in science and engineering in unprecedented ways. The rapid development of Grid computing also encouraged standardization, which led to the adoption of a service-oriented paradigm and an increasing use of commercial Web services technologies. Along these lines, service-level agreements and Quality of Service are essential characteristics of the Grid and specifically mandatory for Grid-enabling complex applications from certain domains such as the health sector. This PhD thesis aims to contribute to the development of Grid technologies by proposing a Grid environment with support for Quality of Service. The proposed environment comprises a secure service-oriented Grid infrastructure based on standard Web services technologies which enables the on-demand provision of native HPC applications as Grid services in an automated way and subject to user-defined QoS constraints. The Grid environment adopts a business-oriented approach and supports a client-driven dynamic negotiation of service-level agreements on a case-by-case basis. Although the design of the QoS support is generic, the implementation emphasizes the specific requirements of compute-intensive and time-critical parallel applications, which necessitate on-demand QoS guarantees such as execution time limits and price constraints. Therefore, the QoS infrastructure relies on advance resource reservation, application-specific resource capacity estimation, and resource pricing. An experimental evaluation demonstrates the capabilities and rational behavior of the QoS infrastructure. The presented Grid infrastructure and in particular the QoS support has been successfully applied and demonstrated in EU projects for various applications from the medical and bio-medical domains. The EU projects GEMSS and Aneurist are concerned with advanced e-health applications and globally distributed data sources, which are virtualized by Grid services. Using Grid technology as enabling technology in the health domain allows medical practitioners and researchers to utilize Grid services in their clinical environment which ultimately results in improved healthcare

    Putting the User at the Centre of the Grid: Simplifying Usability and Resource Selection for High Performance Computing

    Get PDF
    Computer simulation is finding a role in an increasing number of scientific disciplines, concomitant with the rise in available computing power. Realizing this inevitably re- quires access to computational power beyond the desktop, making use of clusters, supercomputers, data repositories, networks and distributed aggregations of these re- sources. Accessing one such resource entails a number of usability and security prob- lems; when multiple geographically distributed resources are involved, the difficulty is compounded. However, usability is an all too often neglected aspect of computing on e-infrastructures, although it is one of the principal factors militating against the widespread uptake of distributed computing. The usability problems are twofold: the user needs to know how to execute the applications they need to use on a particular resource, and also to gain access to suit- able resources to run their workloads as they need them. In this thesis we present our solutions to these two problems. Firstly we propose a new model of e-infrastructure resource interaction, which we call the user–application interaction model, designed to simplify executing application on high performance computing resources. We describe the implementation of this model in the Application Hosting Environment, which pro- vides a Software as a Service layer on top of distributed e-infrastructure resources. We compare the usability of our system with commonly deployed middleware tools using five usability metrics. Our middleware and security solutions are judged to be more usable than other commonly deployed middleware tools. We go on to describe the requirements for a resource trading platform that allows users to purchase access to resources within a distributed e-infrastructure. We present the implementation of this Resource Allocation Market Place as a distributed multi- agent system, and show how it provides a highly flexible, efficient tool to schedule workflows across high performance computing resources

    Provenance tracking in the ViroLab Virtual Laboratory

    No full text
    Provenance describes the process which led to the creation of a piece of data. Tracking provenance of experiment results is essential in modern environments which support conducting of in silico experiments. We present a provenance tracking approach developed as part of the virtual laboratory of the ViroLab project. The applied provenance solution is motivated by the Semantic Grid vision as an infrastructure for e-Science. Provenance data is represented in XML and modeled as ontologies described in the OWL knowledge representation language. The provenance tracking system, PROToS, has been designed and implemented to address important stages of the knowledge management lifecycle
    corecore