3,235 research outputs found

    bdbms -- A Database Management System for Biological Data

    Full text link
    Biologists are increasingly using databases for storing and managing their data. Biological databases typically consist of a mixture of raw data, metadata, sequences, annotations, and related data obtained from various sources. Current database technology lacks several functionalities that are needed by biological databases. In this paper, we introduce bdbms, an extensible prototype database management system for supporting biological data. bdbms extends the functionalities of current DBMSs to include: (1) Annotation and provenance management including storage, indexing, manipulation, and querying of annotation and provenance as first class objects in bdbms, (2) Local dependency tracking to track the dependencies and derivations among data items, (3) Update authorization to support data curation via content-based authorization, in contrast to identity-based authorization, and (4) New access methods and their supporting operators that support pattern matching on various types of compressed biological data types. This paper presents the design of bdbms along with the techniques proposed to support these functionalities including an extension to SQL. We also outline some open issues in building bdbms.Comment: This article is published under a Creative Commons License Agreement (http://creativecommons.org/licenses/by/2.5/.) You may copy, distribute, display, and perform the work, make derivative works and make commercial use of the work, but, you must attribute the work to the author and CIDR 2007. 3rd Biennial Conference on Innovative Data Systems Research (CIDR) January 710, 2007, Asilomar, California, US

    Provenance for Aggregate Queries

    Get PDF
    We study in this paper provenance information for queries with aggregation. Provenance information was studied in the context of various query languages that do not allow for aggregation, and recent work has suggested to capture provenance by annotating the different database tuples with elements of a commutative semiring and propagating the annotations through query evaluation. We show that aggregate queries pose novel challenges rendering this approach inapplicable. Consequently, we propose a new approach, where we annotate with provenance information not just tuples but also the individual values within tuples, using provenance to describe the values computation. We realize this approach in a concrete construction, first for "simple" queries where the aggregation operator is the last one applied, and then for arbitrary (positive) relational algebra queries with aggregation; the latter queries are shown to be more challenging in this context. Finally, we use aggregation to encode queries with difference, and study the semantics obtained for such queries on provenance annotated databases

    An Architecture for Provenance Systems

    No full text
    This document covers the logical and process architectures of provenance systems. The logical architecture identifies key roles and their interactions, whereas the process architecture discusses distribution and security. A fundamental aspect of our presentation is its technology-independent nature, which makes it reusable: the principles that are exposed in this document may be applied to different technologies

    The Vadalog System: Datalog-based Reasoning for Knowledge Graphs

    Full text link
    Over the past years, there has been a resurgence of Datalog-based systems in the database community as well as in industry. In this context, it has been recognized that to handle the complex knowl\-edge-based scenarios encountered today, such as reasoning over large knowledge graphs, Datalog has to be extended with features such as existential quantification. Yet, Datalog-based reasoning in the presence of existential quantification is in general undecidable. Many efforts have been made to define decidable fragments. Warded Datalog+/- is a very promising one, as it captures PTIME complexity while allowing ontological reasoning. Yet so far, no implementation of Warded Datalog+/- was available. In this paper we present the Vadalog system, a Datalog-based system for performing complex logic reasoning tasks, such as those required in advanced knowledge graphs. The Vadalog system is Oxford's contribution to the VADA research programme, a joint effort of the universities of Oxford, Manchester and Edinburgh and around 20 industrial partners. As the main contribution of this paper, we illustrate the first implementation of Warded Datalog+/-, a high-performance Datalog+/- system utilizing an aggressive termination control strategy. We also provide a comprehensive experimental evaluation.Comment: Extended version of VLDB paper <https://doi.org/10.14778/3213880.3213888

    Architecture for Provenance Systems

    No full text
    This document covers the logical and process architectures of provenance systems. The logical architecture identifies key roles and their interactions, whereas the process architecture discusses distribution and security. A fundamental aspect of our presentation is its technology-independent nature, which makes it reusable: the principles that are exposed in this document may be applied to different technologies

    Database Queries that Explain their Work

    Get PDF
    Provenance for database queries or scientific workflows is often motivated as providing explanation, increasing understanding of the underlying data sources and processes used to compute the query, and reproducibility, the capability to recompute the results on different inputs, possibly specialized to a part of the output. Many provenance systems claim to provide such capabilities; however, most lack formal definitions or guarantees of these properties, while others provide formal guarantees only for relatively limited classes of changes. Building on recent work on provenance traces and slicing for functional programming languages, we introduce a detailed tracing model of provenance for multiset-valued Nested Relational Calculus, define trace slicing algorithms that extract subtraces needed to explain or recompute specific parts of the output, and define query slicing and differencing techniques that support explanation. We state and prove correctness properties for these techniques and present a proof-of-concept implementation in Haskell.Comment: PPDP 201

    From Causes for Database Queries to Repairs and Model-Based Diagnosis and Back

    Get PDF
    In this work we establish and investigate connections between causes for query answers in databases, database repairs wrt. denial constraints, and consistency-based diagnosis. The first two are relatively new research areas in databases, and the third one is an established subject in knowledge representation. We show how to obtain database repairs from causes, and the other way around. Causality problems are formulated as diagnosis problems, and the diagnoses provide causes and their responsibilities. The vast body of research on database repairs can be applied to the newer problems of computing actual causes for query answers and their responsibilities. These connections, which are interesting per se, allow us, after a transition -inspired by consistency-based diagnosis- to computational problems on hitting sets and vertex covers in hypergraphs, to obtain several new algorithmic and complexity results for database causality.Comment: To appear in Theory of Computing Systems. By invitation to special issue with extended papers from ICDT 2015 (paper arXiv:1412.4311
    • ā€¦
    corecore