1,207 research outputs found

    A Protected Single Sign-On Technique Using 2D Password in Distributed Computer Networks

    Get PDF
    Single Sign-On (SSO) is a new authentication mechanism that enables a legal user with a single credential to be authenticated by multiple service providers in a distributed computer network. Recently, a new SSO scheme providing well-organized security argument failed to meet credential privacy and soundness of authentication. The main goal of this project is to provide security using Single Sign-On scheme meeting at least three basic security requirements, i.e., unforgetability, credential privacy, and soundness. User identification is an important access control mechanism for client–server networking architectures. The concept of Single Sign-On can allow legal users to use the unitary token to access different service providers in distributed computer networks. To overcome few drawbacks like not preserving user anonymity when possible attacks occur and extensive overhead costs of time-synchronized mechanisms, we propose a secure Single Sign-On mechanism that is efficient, secure, and suitable for mobile devices in distributed computer networks. In a real-life application, the mobile user can use the mobile device, e.g., a cell phone, with the unitary token to access multiservice, such as downloading music; receive/reply electronic mails etc. Our scheme is based on one-way hash functions and random nonce to solve the weaknesses described above and to decrease the overhead of the system. The proposed scheme is more secure with two types of password scheme namely, Text password and Graphical Password referred as 2D password in distributed computer networks that yields a more efficient system that consumes lower energy. The proposed system has less communication overhead. It eliminates the need for time synchronization and there is no need of holding multiple passwords for different services

    Introducing Accountability to Anonymity Networks

    Full text link
    Many anonymous communication (AC) networks rely on routing traffic through proxy nodes to obfuscate the originator of the traffic. Without an accountability mechanism, exit proxy nodes risk sanctions by law enforcement if users commit illegal actions through the AC network. We present BackRef, a generic mechanism for AC networks that provides practical repudiation for the proxy nodes by tracing back the selected outbound traffic to the predecessor node (but not in the forward direction) through a cryptographically verifiable chain. It also provides an option for full (or partial) traceability back to the entry node or even to the corresponding user when all intermediate nodes are cooperating. Moreover, to maintain a good balance between anonymity and accountability, the protocol incorporates whitelist directories at exit proxy nodes. BackRef offers improved deployability over the related work, and introduces a novel concept of pseudonymous signatures that may be of independent interest. We exemplify the utility of BackRef by integrating it into the onion routing (OR) protocol, and examine its deployability by considering several system-level aspects. We also present the security definitions for the BackRef system (namely, anonymity, backward traceability, no forward traceability, and no false accusation) and conduct a formal security analysis of the OR protocol with BackRef using ProVerif, an automated cryptographic protocol verifier, establishing the aforementioned security properties against a strong adversarial model

    Session Initiation Protocol Attacks and Challenges

    Full text link
    In recent years, Session Initiation Protocol (SIP) has become widely used in current internet protocols. It is a text-based protocol much like Hyper Text Transport Protocol (HTTP) and Simple Mail Transport Protocol (SMTP). SIP is a strong enough signaling protocol on the internet for establishing, maintaining, and terminating session. In this paper the areas of security and attacks in SIP are discussed. We consider attacks from diverse related perspectives. The authentication schemes are compared, the representative existing solutions are highlighted, and several remaining research challenges are identified. Finally, the taxonomy of SIP threat will be presented

    Key exchange with the help of a public ledger

    Full text link
    Blockchains and other public ledger structures promise a new way to create globally consistent event logs and other records. We make use of this consistency property to detect and prevent man-in-the-middle attacks in a key exchange such as Diffie-Hellman or ECDH. Essentially, the MitM attack creates an inconsistency in the world views of the two honest parties, and they can detect it with the help of the ledger. Thus, there is no need for prior knowledge or trusted third parties apart from the distributed ledger. To prevent impersonation attacks, we require user interaction. It appears that, in some applications, the required user interaction is reduced in comparison to other user-assisted key-exchange protocols

    Cryptanalysis and improvement of password-authenticated key agreement for session initiation protocol using smart cards

    Get PDF
    Session Initiation Protocol (SIP) is one of the most commonly used protocols for handling sessions for Voice over Internet Protocol (VoIP)-based communications, and the security of SIP is becoming increasingly important. Recently, Zhang et al. proposed a password authenticated key agreement protocol for SIP by using smart cards to protect the VoIP communications between users. Their protocol provided some unique features, such as mutual authentication, no password table needed, and password updating freely. In this study, we performed cryptanalysis of Zhang et al.'s protocol and found that their protocol was vulnerable to the impersonation attack although the protocol could withstand several other attacks. A malicious attacker could compute other users’ privacy keys and then impersonated the users to cheat the SIP server. Furthermore, we proposed an improved password authentication key agreement protocol for SIP, which overcame the weakness of Zhang et al.’s protocol and was more suitable for VoIP communications

    PACCE -A Real Genuine Key Swap over Protocols

    Get PDF
    A Secure protocols for password-based user authentication unit well-studied among the crypto logical literature but have did not see wide-spread adoption on the internet; most proposals up to presently want full modifications to the Transport Layer Security (TLS) protocol, making preparation onerous. Recently many traditional styles square measure projected among that a cryptographically secure countersign-based mutual authentication protocol is run among a confidential (but not primarily authenticated) channel like TLS; the countersign protocol is sure to the established channel to forestall active attacks. Such protocols unit helpful in apply for a ramification of reasons: ability to validate server certificates and can all told likelihood be enforced with no modifications to the secure channel protocol library. It offers a scientific study of such authentication protocols. Building on recent advances in modelling TLS, we've associate inclination to provide a correct definition of the meant security goal, that we've associate inclination to decision password-authenticated and confidential channel institution (PACCE). we've associate inclination to imply generically that combining a secure channel protocol, like TLS, Our prototypes supported TLS unit accessible as a cross-platform client-side Firefox browser extension furthermore as associate golem application and a server-side internet application which will simply be place in on servers
    corecore