229 research outputs found

    Iz stranih časopisa

    Get PDF
    U tekstu je dan popis radova koji su objavljeni u stranim časopisima

    Iz stranih časopisa

    Get PDF
    U tekstu je dan popis radova koji su objavljeni u stranim časopisima

    Robust regularized set operations on polyhedra

    Get PDF
    Journal ArticleThis paper describes a provably correct and robust implementation of regularized set operations on polyhedral objects. Although the algorithm described here does not assume manifold polyhedra and handles all possible degenerate cases, it turns out to be quite simple. The geometric operations and relations are computed with floating point arithmetic which is efficient but not necessarily precise. To ensure that the results are still consistent we implemented a test that detects when dependent decisions contradict each other. The consistency test is relatively simple and can be carried out locally without having to reason about the logical dependencies of the geometric relations. The logical structure and the efficiency of the algorithm are barely influenced by the consistency test which makes this approach well suited for interactive modeling systems on modern workstations

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    SoK: Diving into DAG-based Blockchain Systems

    Full text link
    Blockchain plays an important role in cryptocurrency markets and technology services. However, limitations on high latency and low scalability retard their adoptions and applications in classic designs. Reconstructed blockchain systems have been proposed to avoid the consumption of competitive transactions caused by linear sequenced blocks. These systems, instead, structure transactions/blocks in the form of Directed Acyclic Graph (DAG) and consequently re-build upper layer components including consensus, incentives, \textit{etc.} The promise of DAG-based blockchain systems is to enable fast confirmation (complete transactions within million seconds) and high scalability (attach transactions in parallel) without significantly compromising security. However, this field still lacks systematic work that summarises the DAG technique. To bridge the gap, this Systematization of Knowledge (SoK) provides a comprehensive analysis of DAG-based blockchain systems. Through deconstructing open-sourced systems and reviewing academic researches, we conclude the main components and featured properties of systems, and provide the approach to establish a DAG. With this in hand, we analyze the security and performance of several leading systems, followed by discussions and comparisons with concurrent (scaling blockchain) techniques. We further identify open challenges to highlight the potentiality of DAG-based solutions and indicate their promising directions for future research.Comment: Full versio

    Algorithms incorporating concurrency and caching

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 189-203).This thesis describes provably good algorithms for modern large-scale computer systems, including today's multicores. Designing efficient algorithms for these systems involves overcoming many challenges, including concurrency (dealing with parallel accesses to the same data) and caching (achieving good memory performance.) This thesis includes two parallel algorithms that focus on testing for atomicity violations in a parallel fork-join program. These algorithms augment a parallel program with a data structure that answers queries about the program's structure, on the fly. Specifically, one data structure, called SP-ordered-bags, maintains the series-parallel relationships among threads, which is vital for uncovering race conditions (bugs) in the program. Another data structure, called XConflict, aids in detecting conflicts in a transactional-memory system with nested parallel transactions. For a program with work T and span To, maintaining either data structure adds an overhead of PT, to the running time of the parallel program when executed on P processors using an efficient scheduler, yielding a total runtime of O(T1/P + PTo). For each of these data structures, queries can be answered in 0(1) time. This thesis also introduces the compressed sparse rows (CSB) storage format for sparse matrices, which allows both Ax and ATx to be computed efficiently in parallel, where A is an n x n sparse matrix with nnz > n nonzeros and x is a dense n-vector. The parallel multiplication algorithm uses e(nnz) work and ... span, yielding a parallelism of ... , which is amply high for virtually any large matrix.(cont.) Also addressing concurrency, this thesis considers two scheduling problems. The first scheduling problem, motivated by transactional memory, considers randomized backoff when jobs have different lengths. I give an analysis showing that binary exponential backoff achieves makespan V2e(6v 1- i ) with high probability, where V is the total length of all n contending jobs. This bound is significantly larger than when jobs are all the same size. A variant of exponential backoff, however, achieves makespan of ... with high probability. I also present the size-hashed backoff protocol, specifically designed for jobs having different lengths, that achieves makespan ... with high probability. The second scheduling problem considers scheduling n unit-length jobs on m unrelated machines, where each job may fail probabilistically. Specifically, an input consists of a set of n jobs, a directed acyclic graph G describing the precedence constraints among jobs, and a failure probability qij for each job j and machine i. The goal is to find a schedule that minimizes the expected makespan. I give an O(log log(min {m, n}))-approximation for the case of independent jobs (when there are no precedence constraints) and an O(log(n + m) log log(min {m, n}))-approximation algorithm when precedence constraints form disjoint chains. This chain algorithm can be extended into one that supports precedence constraints that are trees, which worsens the approximation by another log(n) factor. To address caching, this thesis includes several new variants of cache-oblivious dynamic dictionaries.(cont.) A cache-oblivious dictionary fills the same niche as a classic B-tree, but it does so without tuning for particular memory parameters. Thus, cache-oblivious dictionaries optimize for all levels of a multilevel hierarchy and are more portable than traditional B-trees. I describe how to add concurrency to several previously existing cache-oblivious dictionaries. I also describe two new data structures that achieve significantly cheaper insertions with a small overhead on searches. The cache-oblivious lookahead array (COLA) supports insertions/deletions and searches in O((1/B) log N) and O(log N) memory transfers, respectively, where B is the block size, M is the memory size, and N is the number of elements in the data structure. The xDict supports these operations in O((1/1B E1-) logB(N/M)) and O((1/)0logB(N/M)) memory transfers, respectively, where 0 < E < 1 is a tunable parameter. Also on caching, this thesis answers the question: what is the worst possible page-replacement strategy? The goal of this whimsical chapter is to devise an online strategy that achieves the highest possible fraction of page faults / cache misses as compared to the worst offline strategy. I show that there is no deterministic strategy that is competitive with the worst offline. I also give a randomized strategy based on the most recently used heuristic and show that it is the worst possible pagereplacement policy. On a more serious note, I also show that direct mapping is, in some sense, a worst possible page-replacement policy. Finally, this thesis includes a new algorithm, following a new approach, for the problem of maintaining a topological ordering of a dag as edges are dynamically inserted.(cont.) The main result included here is an O(n2 log n) algorithm for maintaining a topological ordering in the presence of up to m < n(n - 1)/2 edge insertions. In contrast, the previously best algorithm has a total running time of O(min { m3/ 2, n5/2 }). Although these algorithms are not parallel and do not exhibit particularly good locality, some of the data structural techniques employed in my solution are similar to others in this thesis.by Jeremy T. Fineman.Ph.D

    Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A Contemporary Survey

    Full text link
    Adversarial attacks and defenses in machine learning and deep neural network have been gaining significant attention due to the rapidly growing applications of deep learning in the Internet and relevant scenarios. This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques, with a focus on deep neural network-based classification models. Specifically, we conduct a comprehensive classification of recent adversarial attack methods and state-of-the-art adversarial defense techniques based on attack principles, and present them in visually appealing tables and tree diagrams. This is based on a rigorous evaluation of the existing works, including an analysis of their strengths and limitations. We also categorize the methods into counter-attack detection and robustness enhancement, with a specific focus on regularization-based methods for enhancing robustness. New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks, and a hierarchical classification of the latest defense methods is provided, highlighting the challenges of balancing training costs with performance, maintaining clean accuracy, overcoming the effect of gradient masking, and ensuring method transferability. At last, the lessons learned and open challenges are summarized with future research opportunities recommended.Comment: 46 pages, 21 figure

    A Survey on Consensus Mechanisms and Mining Strategy Management in Blockchain Networks

    Full text link
    © 2013 IEEE. The past decade has witnessed the rapid evolution in blockchain technologies, which has attracted tremendous interests from both the research communities and industries. The blockchain network was originated from the Internet financial sector as a decentralized, immutable ledger system for transactional data ordering. Nowadays, it is envisioned as a powerful backbone/framework for decentralized data processing and data-driven self-organization in flat, open-access networks. In particular, the plausible characteristics of decentralization, immutability, and self-organization are primarily owing to the unique decentralized consensus mechanisms introduced by blockchain networks. This survey is motivated by the lack of a comprehensive literature review on the development of decentralized consensus mechanisms in blockchain networks. In this paper, we provide a systematic vision of the organization of blockchain networks. By emphasizing the unique characteristics of decentralized consensus in blockchain networks, our in-depth review of the state-of-the-art consensus protocols is focused on both the perspective of distributed consensus system design and the perspective of incentive mechanism design. From a game-theoretic point of view, we also provide a thorough review of the strategy adopted for self-organization by the individual nodes in the blockchain backbone networks. Consequently, we provide a comprehensive survey of the emerging applications of blockchain networks in a broad area of telecommunication. We highlight our special interest in how the consensus mechanisms impact these applications. Finally, we discuss several open issues in the protocol design for blockchain consensus and the related potential research directions
    corecore