991 research outputs found

    多人数署名の証明可能安全性に関する研究

    Get PDF
    筑波大学 (University of Tsukuba)201

    EFFICIENT AND SCALABLE NETWORK SECURITY PROTOCOLS BASED ON LFSR SEQUENCES

    Get PDF
    The gap between abstract, mathematics-oriented research in cryptography and the engineering approach of designing practical, network security protocols is widening. Network researchers experiment with well-known cryptographic protocols suitable for different network models. On the other hand, researchers inclined toward theory often design cryptographic schemes without considering the practical network constraints. The goal of this dissertation is to address problems in these two challenging areas: building bridges between practical network security protocols and theoretical cryptography. This dissertation presents techniques for building performance sensitive security protocols, using primitives from linear feedback register sequences (LFSR) sequences, for a variety of challenging networking applications. The significant contributions of this thesis are: 1. A common problem faced by large-scale multicast applications, like real-time news feeds, is collecting authenticated feedback from the intended recipients. We design an efficient, scalable, and fault-tolerant technique for combining multiple signed acknowledgments into a single compact one and observe that most signatures (based on the discrete logarithm problem) used in previous protocols do not result in a scalable solution to the problem. 2. We propose a technique to authenticate on-demand source routing protocols in resource-constrained wireless mobile ad-hoc networks. We develop a single-round multisignature that requires no prior cooperation among nodes to construct the multisignature and supports authentication of cached routes. 3. We propose an efficient and scalable aggregate signature, tailored for applications like building efficient certificate chains, authenticating distributed and adaptive content management systems and securing path-vector routing protocols. 4. We observe that blind signatures could form critical building blocks of privacypreserving accountability systems, where an authority needs to vouch for the legitimacy of a message but the ownership of the message should be kept secret from the authority. We propose an efficient blind signature that can serve as a protocol building block for performance sensitive, accountability systems. All special forms digital signatures—aggregate, multi-, and blind signatures—proposed in this dissertation are the first to be constructed using LFSR sequences. Our detailed cost analysis shows that for a desired level of security, the proposed signatures outperformed existing protocols in computation cost, number of communication rounds and storage overhead

    Lime: Data Lineage in the Malicious Environment

    Full text link
    Intentional or unintentional leakage of confidential data is undoubtedly one of the most severe security threats that organizations face in the digital era. The threat now extends to our personal lives: a plethora of personal information is available to social networks and smartphone providers and is indirectly transferred to untrustworthy third party and fourth party applications. In this work, we present a generic data lineage framework LIME for data flow across multiple entities that take two characteristic, principal roles (i.e., owner and consumer). We define the exact security guarantees required by such a data lineage mechanism toward identification of a guilty entity, and identify the simplifying non repudiation and honesty assumptions. We then develop and analyze a novel accountable data transfer protocol between two entities within a malicious environment by building upon oblivious transfer, robust watermarking, and signature primitives. Finally, we perform an experimental evaluation to demonstrate the practicality of our protocol

    Proof-of-Prestige: A Useful Work Reward System for Unverifiable Tasks

    Full text link
    As cryptographic tokens and altcoins are increasingly being built to serve as utility tokens, the notion of useful work consensus protocols, as opposed to number-crunching PoW consensus, is becoming ever more important. In such contexts, users get rewards from the network after they have carried out some specific task useful for the network. While in some cases the proof of some utility or service can be proved, the majority of tasks are impossible to verify. In order to deal with such cases, we design Proof-of-Prestige (PoP) - a reward system that can run on top of Proof-of-Stake blockchains. PoP introduces prestige which is a volatile resource and, in contrast to coins, regenerates over time. Prestige can be gained by performing useful work, spent when benefiting from services and directly translates to users minting power. PoP is resistant against Sybil and Collude attacks and can be used to reward workers for completing unverifiable tasks, while keeping the system free for the end-users. We use two exemplar use-cases to showcase the usefulness of PoP and we build a simulator to assess the cryptoeconomic behaviour of the system in terms of prestige transfer between nodes.Comment: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC 2019

    CONSTRUCTION OF EFFICIENT AUTHENTICATION SCHEMES USING TRAPDOOR HASH FUNCTIONS

    Get PDF
    In large-scale distributed systems, where adversarial attacks can have widespread impact, authentication provides protection from threats involving impersonation of entities and tampering of data. Practical solutions to authentication problems in distributed systems must meet specific constraints of the target system, and provide a reasonable balance between security and cost. The goal of this dissertation is to address the problem of building practical and efficient authentication mechanisms to secure distributed applications. This dissertation presents techniques to construct efficient digital signature schemes using trapdoor hash functions for various distributed applications. Trapdoor hash functions are collision-resistant hash functions associated with a secret trapdoor key that allows the key-holder to find collisions between hashes of different messages. The main contributions of this dissertation are as follows: 1. A common problem with conventional trapdoor hash functions is that revealing a collision producing message pair allows an entity to compute additional collisions without knowledge of the trapdoor key. To overcome this problem, we design an efficient trapdoor hash function that prevents all entities except the trapdoor key-holder from computing collisions regardless of whether collision producing message pairs are revealed by the key-holder. 2. We design a technique to construct efficient proxy signatures using trapdoor hash functions to authenticate and authorize agents acting on behalf of users in agent-based computing systems. Our technique provides agent authentication, assurance of agreement between delegator and agent, security without relying on secure communication channels and control over an agent’s capabilities. 3. We develop a trapdoor hash-based signature amortization technique for authenticating real-time, delay-sensitive streams. Our technique provides independent verifiability of blocks comprising a stream, minimizes sender-side and receiver-side delays, minimizes communication overhead, and avoids transmission of redundant information. 4. We demonstrate the practical efficacy of our trapdoor hash-based techniques for signature amortization and proxy signature construction by presenting discrete log-based instantiations of the generic techniques that are efficient to compute, and produce short signatures. Our detailed performance analyses demonstrate that the proposed schemes outperform existing schemes in computation cost and signature size. We also present proofs for security of the proposed discrete-log based instantiations against forgery attacks under the discrete-log assumption

    Optimal and Efficient Searchable Encryption with Single Trapdoor for Multi-Owner Data Sharing in Federated Cloud Computing

    Get PDF
    Cloud computing, an Internet based computing model, has changed the way of data owners store and manage data. In such environment, data sharing is very important with more efficient data access control. Issuing an aggregate key to users on data enables and authorizes them to search for data of select encrypted files using trapdoor or encrypted keyword. The existing schemes defined for this purpose do have certain limitations. For instance, Cui et al. scheme is elegant but lacks in flexibility in access control in presence of multiple data owners sharing data to users. Its single trapdoor approach needs transformation into individual trapdoors to access data of specific data owner. Moreover, the existing schemes including that of Cui et al. does not support federated cloud.  In this paper we proposed an efficient key aggregate searchable encryption scheme which enables multiple featuressuch as support for truly single aggregate key to access data of many data owners, federated cloud support,query privacy, controlled search process and security against cross-pairing attack. It has algorithms for setup, keygen, encrypt, extract, aggregate, trapdoor, test and federator. In multi-user setting it is designed to serve data owners and users with secure data sharing through key aggregate searchable encryption The proposed scheme supports federated cloud. Experimental results revealed that the proposed scheme is provably secure withrelatively less computational overhead and time complexity when compared with the state of the art
    corecore