365 research outputs found

    1. Kryptotag - Workshop ĂĽber Kryptographie

    Get PDF
    Der Report enthält eine Sammlung aller Beiträge der Teilnehmer des 1. Kryptotages am 1. Dezember 2004 in Mannheim

    Key exchange with the help of a public ledger

    Full text link
    Blockchains and other public ledger structures promise a new way to create globally consistent event logs and other records. We make use of this consistency property to detect and prevent man-in-the-middle attacks in a key exchange such as Diffie-Hellman or ECDH. Essentially, the MitM attack creates an inconsistency in the world views of the two honest parties, and they can detect it with the help of the ledger. Thus, there is no need for prior knowledge or trusted third parties apart from the distributed ledger. To prevent impersonation attacks, we require user interaction. It appears that, in some applications, the required user interaction is reduced in comparison to other user-assisted key-exchange protocols

    EFFICIENT AND SCALABLE NETWORK SECURITY PROTOCOLS BASED ON LFSR SEQUENCES

    Get PDF
    The gap between abstract, mathematics-oriented research in cryptography and the engineering approach of designing practical, network security protocols is widening. Network researchers experiment with well-known cryptographic protocols suitable for different network models. On the other hand, researchers inclined toward theory often design cryptographic schemes without considering the practical network constraints. The goal of this dissertation is to address problems in these two challenging areas: building bridges between practical network security protocols and theoretical cryptography. This dissertation presents techniques for building performance sensitive security protocols, using primitives from linear feedback register sequences (LFSR) sequences, for a variety of challenging networking applications. The significant contributions of this thesis are: 1. A common problem faced by large-scale multicast applications, like real-time news feeds, is collecting authenticated feedback from the intended recipients. We design an efficient, scalable, and fault-tolerant technique for combining multiple signed acknowledgments into a single compact one and observe that most signatures (based on the discrete logarithm problem) used in previous protocols do not result in a scalable solution to the problem. 2. We propose a technique to authenticate on-demand source routing protocols in resource-constrained wireless mobile ad-hoc networks. We develop a single-round multisignature that requires no prior cooperation among nodes to construct the multisignature and supports authentication of cached routes. 3. We propose an efficient and scalable aggregate signature, tailored for applications like building efficient certificate chains, authenticating distributed and adaptive content management systems and securing path-vector routing protocols. 4. We observe that blind signatures could form critical building blocks of privacypreserving accountability systems, where an authority needs to vouch for the legitimacy of a message but the ownership of the message should be kept secret from the authority. We propose an efficient blind signature that can serve as a protocol building block for performance sensitive, accountability systems. All special forms digital signatures—aggregate, multi-, and blind signatures—proposed in this dissertation are the first to be constructed using LFSR sequences. Our detailed cost analysis shows that for a desired level of security, the proposed signatures outperformed existing protocols in computation cost, number of communication rounds and storage overhead

    Improved Framework for Blockchain Application Using Lattice Based Key Agreement Protocol

    Get PDF
    One of the most recent challenges in communicationsystem and network system is the privacy and security ofinformation and communication session. Blockchain is one oftechnologies that use in sensing application in different importantenvironments such as healthcare. In healthcare the patient privacyshould be protected use high security system. Key agreementprotocol based on lattice ensure the authentication and highprotection against different types of attack especiallyimpersonation and man in the middle attack where the latticebased protocol is quantum-withstand protocol. Proposed improvedframework using lattice based key agreement protocol forapplication of block chain, with security analysis of manyliteratures that proposed different protocols has been presentedwith comparative study. The resultant new framework based onlattice overcome the latency limitation of block chain in the oldframework and lowered the computation cost that depend onElliptic curve Diffie-Hellman. Also, it ensures high privacy andprotection of patient’s informatio
    • …
    corecore