383 research outputs found

    On the security of pairing-free certificateless digital signature schemes using ECC

    Get PDF
    AbstractI cryptanalyze the pairing-free digital signature scheme of Islam et al. which is proven secure against “adaptive chosen message attacks”. I introduce this type of forgery to analyze their scheme. Furthermore, I comment on general security issues that should be considered when making improvements on their scheme. My security analysis is also applicable to other digital signatures designed in a similar manner

    Secure pairing-free two-party certificateless authenticated key agreement protocol with minimal computational complexity

    Get PDF
    Key agreement protocols play a vital role in maintaining security in many critical applications due to the importance of the secret key. Bilinear pairing was commonly used in designing secure protocols for the last several years; however, high computational complexity of this operation has been the main obstacle towards its practicality. Therefore, implementation of Elliptic-curve based operations, instead of bilinear pairings, has become popular recently, and pairing-free key agreement protocols have been explored in many studies. A considerable amount of literatures has been published on pairing-free key agreement protocols in the context of Public Key Cryptography (PKC). Simpler key management and non-existence of key escrow problem make certificateless PKC more appealing in practice. However, achieving certificateless pairing-free two-party authenticated key agreement protocols (CL-AKA) that provide high level of security with low computational complexity, remains a challenge in the research area. This research presents a secure and lightweight pairingfree CL-AKA protocol named CL2AKA (CertificateLess 2-party Authenticated Key Agreement). The properties of CL2AKA protocol is that, it is computationally lightweight while communication overhead remains the same as existing protocols of related works. The results indicate that CL2AKA protocol is 21% computationally less complex than the most efficient pairing-free CL-AKA protocol (KKC-13) and 53% less in comparison with the pairing-free CL-AKA protocol with highest level of security guarantee (SWZ-13). Security of CL2AKA protocol is evaluated based on provable security evaluation method under the strong eCK model. It is also proven that the CL2AKA supports all of the security requirements which are necessary for authenticated key agreement protocols. Besides the CL2AKA as the main finding of this research work, there are six pairing-free CL-AKA protocols presented as CL2AKA basic version protocols, which were the outcomes of several attempts in designing the CL2AKA

    Certificateless Blind Signature Based on DLP

    Get PDF
    The most widely used digital signature in the real word application such as e cash e-voting etc. is blind signature. Previously the proposed blind signature follow the foot steps of public key cryptography(PKC) but conventional public key cryptography uses an affirmation of a relationship between public key and identity for the holder of the corresponding private key to the user, so certificate management is very difficult. To overcome this problem Identity based cryptography is introduced. But Identity based cryptography is inherited with key escrow problem. Blind signature with certificateless PKC(CLBS) used widely because it eliminate the problem related to certificate management of cryptography and the key escrow problem of ID based PKC. Because of large requirement of CLBS scheme in different applications many CLBS scheme is proposed, but they were based on bilinear pairing. However, the CLBS scheme based on bilinear pairing is not very satisfiable because bilinear pairing operations are very complicated. In our proposed scheme, we designed a certificateless blind signature scheme based on the discrete logarithmic problem. The proposed scheme fulfills all the security requirements of blind signature as well as certificateless signature. We analyzed security properties such as blindness, unforgeability and unlinkability. The proposed scheme has less computational cost. The hardness of discrete logarithmic problem (DLP) is used to prove the security of the proposed scheme

    Cryptanalysis on two certificates signature schemes

    Full text link
    Certificateless cryptography has attracted a lot of attention from the research community, due to its applicability in information security. In this paper, we analyze two recently proposed certificateless signature schemes and point out their security flaws. In particular, we demonstrate universal forgeries against these schemes with known message attack

    Vicious circles in contracts and in logic

    Get PDF
    Contracts are formal promises on the future interactions of participants, which describe the causal dependencies among their actions. An inherent feature of contracts is that such dependencies may be circular: for instance, a buyer promises to pay for an item if the seller promises to ship it, and vice versa. We establish a bridge between two formal models for contracts, one based on games over event structures, and the other one on Propositional Contract Logic. In particular, we show that winning strategies in the game-theoretic model correspond to proofs in the logi
    corecore