445 research outputs found

    On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization

    Full text link
    Conventional wisdom in deep learning states that increasing depth improves expressiveness but complicates optimization. This paper suggests that, sometimes, increasing depth can speed up optimization. The effect of depth on optimization is decoupled from expressiveness by focusing on settings where additional layers amount to overparameterization - linear neural networks, a well-studied model. Theoretical analysis, as well as experiments, show that here depth acts as a preconditioner which may accelerate convergence. Even on simple convex problems such as linear regression with â„“p\ell_p loss, p>2p>2, gradient descent can benefit from transitioning to a non-convex overparameterized objective, more than it would from some common acceleration schemes. We also prove that it is mathematically impossible to obtain the acceleration effect of overparametrization via gradients of any regularizer.Comment: Published at the International Conference on Machine Learning (ICML) 201

    The Law of Parsimony in Gradient Descent for Learning Deep Linear Networks

    Full text link
    Over the past few years, an extensively studied phenomenon in training deep networks is the implicit bias of gradient descent towards parsimonious solutions. In this work, we investigate this phenomenon by narrowing our focus to deep linear networks. Through our analysis, we reveal a surprising "law of parsimony" in the learning dynamics when the data possesses low-dimensional structures. Specifically, we show that the evolution of gradient descent starting from orthogonal initialization only affects a minimal portion of singular vector spaces across all weight matrices. In other words, the learning process happens only within a small invariant subspace of each weight matrix, despite the fact that all weight parameters are updated throughout training. This simplicity in learning dynamics could have significant implications for both efficient training and a better understanding of deep networks. First, the analysis enables us to considerably improve training efficiency by taking advantage of the low-dimensional structure in learning dynamics. We can construct smaller, equivalent deep linear networks without sacrificing the benefits associated with the wider counterparts. Second, it allows us to better understand deep representation learning by elucidating the linear progressive separation and concentration of representations from shallow to deep layers. We also conduct numerical experiments to support our theoretical results. The code for our experiments can be found at https://github.com/cjyaras/lawofparsimony.Comment: The first two authors contributed to this work equally; 32 pages, 12 figure

    Householder-Absolute Neural Layers For High Variability and Deep Trainability

    Full text link
    We propose a new architecture for artificial neural networks called Householder-absolute neural layers, or Han-layers for short, that use Householder reflectors as weight matrices and the absolute-value function for activation. Han-layers, functioning as fully connected layers, are motivated by recent results on neural-network variability and are designed to increase activation ratio and reduce the chance of Collapse to Constants. Neural networks constructed chiefly from Han-layers are called HanNets. By construction, HanNets enjoy a theoretical guarantee that vanishing or exploding gradient never occurs. We conduct several proof-of-concept experiments. Some surprising results obtained on styled test problems suggest that, under certain conditions, HanNets exhibit an unusual ability to produce nearly perfect solutions unattainable by fully connected networks. Experiments on regression datasets show that HanNets can significantly reduce the number of model parameters while maintaining or improving the level of generalization accuracy. In addition, by adding a few Han-layers into the pre-classification FC-layer of a convolutional neural network, we are able to quickly improve a state-of-the-art result on CIFAR10 dataset. These proof-of-concept results are sufficient to necessitate further studies on HanNets to understand their capacities and limits, and to exploit their potentials in real-world applications
    • …
    corecore