2,246 research outputs found

    Slicing and contours generation for fabricating heterogeneous objects

    Get PDF
    A contour sub-division algorithm on each layer arising from slicing a heterogeneous object is proposed. Within each slice, the material grading is decomposed into subcontours according to the different grading variation. A parameter called 'grading step-width' is defined to control the number of sub-contours and resolution of the grading. With such discretization, it is, therefore, possible to build a heterogeneous object on layered manufacturing machines of different fabricating precision specification.published_or_final_versio

    Additive Manufacturing of Recycled Composites

    Get PDF
    An additive remanufacturing process for mechanically recycled glass fibers and thermally recycled carbon fibers was developed. The main purpose was to demonstrate the feasibility of an additive remanufacturing process starting from recycled glass and carbon fibers to obtain a new photo- and thermally-curable composite. 3D printable and UV-curable inks were developed and characterized for new ad-hoc UV-assisted 3D printing apparatus. Rheological behavior was investigated and optimized considering the 3D printing process, the recyclate content, and the level of dispersion in the matrix. Some requirements for the new formulations were defined. Moreover, new printing apparatuses were designed and modified to improve the remanufacturing process. Different models and geometries were defined with different printable ink formulations to test material mechanical properties and overall process quality on the final pieces. To sum up, 3D printable inks with different percentages of recycled glass fiber and carbon fiber reinforced polymers were successfully 3D printed

    Advanced Manufacturing of an Aircraft Component (Fish-Head): A Technology Review on the Fabrication

    Get PDF
    The Airbus fish-head is machined using a 5-axis Computerized Numerical Control (CNC) milling machine, which consists of many complex shapes that are built into it. A conventional CNC machining requires tremendous effort in programming and investment due to the increasing in features complexity of the fish-head to be machined. An alternative method through advanced manufacturing processes namely vacuum casting, Fused Deposition Modelling (FDM) and three dimensional printing (3DP) is reviewed. The fish-head prototypes are manufactured through the concept of reverse engineering and rapid prototyping. The fish-head master pattern is digitized using a three dimensional laser scanner and edited using a surface modelling software to generate the Standard Triangulation Language (STL), which is common to most rapid prototyping (RP) machines. The fish-head prototypes are fabricated through FDM and 3DP using the STL data files, whereas the master pattern is used to fabricated silicone mould for vacuum casting. The quality of the prototypes is accessed in terms of dimensional accuracy and time to produce a single prototype. The dimensional accuracy is analysed using coordinate measuring machine (CMM). The dimensional accuracy error is found to be less than 5%. However, all prototypes require secondary surface treatment processing in order to achieve the desired surface roughness quality. All three prototypes can be manufactured less than 24 hours per prototype. The advanced manufacturing processes allows parts to be fabricated similar to parts manufactured through CNC but at a lower cost and faster

    Unconventional Low-Cost Fabrication and Patterning Techniques for Point of Care Diagnostics

    Get PDF
    The potential of rapid, quantitative, and sensitive diagnosis has led to many innovative ‘lab on chip’ technologies for point of care diagnostic applications. Because these chips must be designed within strict cost constraints to be widely deployable, recent research in this area has produced extremely novel non-conventional micro- and nano-fabrication innovations. These advances can be leveraged for other biological assays as well, including for custom assay development and academic prototyping. The technologies reviewed here leverage extremely low-cost substrates and easily adoptable ways to pattern both structural and biological materials at high resolution in unprecedented ways. These new approaches offer the promise of more rapid prototyping with less investment in capital equipment as well as greater flexibility in design. Though still in their infancy, these technologies hold potential to improve upon the resolution, sensitivity, flexibility, and cost-savings over more traditional approaches

    Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies

    Get PDF
    The possibility of designing and manufacturing biomedical microdevices with multiple length-scale geometries can help to promote special interactions both with their environment and with surrounding biological systems. These interactions aim to enhance biocompatibility and overall performance by using biomimetic approaches. In this paper, we present a design and manufacturing procedure for obtaining multi-scale biomedical microsystems based on the combination of two additive manufacturing processes: a conventional laser writer to manufacture the overall device structure, and a direct-laser writer based on two-photon polymerization to yield finer details. The process excels for its versatility, accuracy and manufacturing speed and allows for the manufacture of microsystems and implants with overall sizes up to several millimeters and with details down to sub-micrometric structures. As an application example we have focused on manufacturing a biomedical microsystem to analyze the impact of microtextured surfaces on cell motility. This process yielded a relevant increase in precision and manufacturing speed when compared with more conventional rapid prototyping procedures

    Blending the Material and Digital World for Hybrid Interfaces

    Get PDF
    The development of digital technologies in the 21st century is progressing continuously and new device classes such as tablets, smartphones or smartwatches are finding their way into our everyday lives. However, this development also poses problems, as these prevailing touch and gestural interfaces often lack tangibility, take little account of haptic qualities and therefore require full attention from their users. Compared to traditional tools and analog interfaces, the human skills to experience and manipulate material in its natural environment and context remain unexploited. To combine the best of both, a key question is how it is possible to blend the material world and digital world to design and realize novel hybrid interfaces in a meaningful way. Research on Tangible User Interfaces (TUIs) investigates the coupling between physical objects and virtual data. In contrast, hybrid interfaces, which specifically aim to digitally enrich analog artifacts of everyday work, have not yet been sufficiently researched and systematically discussed. Therefore, this doctoral thesis rethinks how user interfaces can provide useful digital functionality while maintaining their physical properties and familiar patterns of use in the real world. However, the development of such hybrid interfaces raises overarching research questions about the design: Which kind of physical interfaces are worth exploring? What type of digital enhancement will improve existing interfaces? How can hybrid interfaces retain their physical properties while enabling new digital functions? What are suitable methods to explore different design? And how to support technology-enthusiast users in prototyping? For a systematic investigation, the thesis builds on a design-oriented, exploratory and iterative development process using digital fabrication methods and novel materials. As a main contribution, four specific research projects are presented that apply and discuss different visual and interactive augmentation principles along real-world applications. The applications range from digitally-enhanced paper, interactive cords over visual watch strap extensions to novel prototyping tools for smart garments. While almost all of them integrate visual feedback and haptic input, none of them are built on rigid, rectangular pixel screens or use standard input modalities, as they all aim to reveal new design approaches. The dissertation shows how valuable it can be to rethink familiar, analog applications while thoughtfully extending them digitally. Finally, this thesis’ extensive work of engineering versatile research platforms is accompanied by overarching conceptual work, user evaluations and technical experiments, as well as literature reviews.Die Durchdringung digitaler Technologien im 21. Jahrhundert schreitet stetig voran und neue Geräteklassen wie Tablets, Smartphones oder Smartwatches erobern unseren Alltag. Diese Entwicklung birgt aber auch Probleme, denn die vorherrschenden berührungsempfindlichen Oberflächen berücksichtigen kaum haptische Qualitäten und erfordern daher die volle Aufmerksamkeit ihrer Nutzer:innen. Im Vergleich zu traditionellen Werkzeugen und analogen Schnittstellen bleiben die menschlichen Fähigkeiten ungenutzt, die Umwelt mit allen Sinnen zu begreifen und wahrzunehmen. Um das Beste aus beiden Welten zu vereinen, stellt sich daher die Frage, wie neuartige hybride Schnittstellen sinnvoll gestaltet und realisiert werden können, um die materielle und die digitale Welt zu verschmelzen. In der Forschung zu Tangible User Interfaces (TUIs) wird die Verbindung zwischen physischen Objekten und virtuellen Daten untersucht. Noch nicht ausreichend erforscht wurden hingegen hybride Schnittstellen, die speziell darauf abzielen, physische Gegenstände des Alltags digital zu erweitern und anhand geeigneter Designparameter und Entwurfsräume systematisch zu untersuchen. In dieser Dissertation wird daher untersucht, wie Materialität und Digitalität nahtlos ineinander übergehen können. Es soll erforscht werden, wie künftige Benutzungsschnittstellen nützliche digitale Funktionen bereitstellen können, ohne ihre physischen Eigenschaften und vertrauten Nutzungsmuster in der realen Welt zu verlieren. Die Entwicklung solcher hybriden Ansätze wirft jedoch übergreifende Forschungsfragen zum Design auf: Welche Arten von physischen Schnittstellen sind es wert, betrachtet zu werden? Welche Art von digitaler Erweiterung verbessert das Bestehende? Wie können hybride Konzepte ihre physischen Eigenschaften beibehalten und gleichzeitig neue digitale Funktionen ermöglichen? Was sind geeignete Methoden, um verschiedene Designs zu erforschen? Wie kann man Technologiebegeisterte bei der Erstellung von Prototypen unterstützen? Für eine systematische Untersuchung stützt sich die Arbeit auf einen designorientierten, explorativen und iterativen Entwicklungsprozess unter Verwendung digitaler Fabrikationsmethoden und neuartiger Materialien. Im Hauptteil werden vier Forschungsprojekte vorgestellt, die verschiedene visuelle und interaktive Prinzipien entlang realer Anwendungen diskutieren. Die Szenarien reichen von digital angereichertem Papier, interaktiven Kordeln über visuelle Erweiterungen von Uhrarmbändern bis hin zu neuartigen Prototyping-Tools für intelligente Kleidungsstücke. Um neue Designansätze aufzuzeigen, integrieren nahezu alle visuelles Feedback und haptische Eingaben, um Alternativen zu Standard-Eingabemodalitäten auf starren Pixelbildschirmen zu schaffen. Die Dissertation hat gezeigt, wie wertvoll es sein kann, bekannte, analoge Anwendungen zu überdenken und sie dabei gleichzeitig mit Bedacht digital zu erweitern. Dabei umfasst die vorliegende Arbeit sowohl realisierte technische Forschungsplattformen als auch übergreifende konzeptionelle Arbeiten, Nutzerstudien und technische Experimente sowie die Analyse existierender Forschungsarbeiten

    Collaborative digital and wide format printing: Methods and considerations for the artist and master printer

    Get PDF
    This thesis investigates the collaborative production of fine art digital prints for artists,a process which is used by many contemporary practitioners including RichardHamilton and Damien Hirst. Digital print as a fine art process has emerged over the last twenty years, and as yet, there is no in depth evidence on the collaborative endeavour and production process which is central to the digital Master Printer’s role.The investigation first establishes the historical context and significance of the Master and Printer in traditional printmaking, and the more recent development of the digital print studio and the digital print pioneers of the 1990s. A series of seven artists’ case studies in the context of the collaborative digital print studio are then offered to demonstrate the working process. The analysis of these proposes a best practice model for Master Printers working with contemporary artists to produce high quality, fine art, wide format inkjet digital prints.The study also compares production methods at the cutting-edge digital facility of the Rijksakademie in The Netherlands, to assess the validity of the practices proposed through a facility closest to the study’s research base at the CFPR’s digital studio. The comparative study also explored the expanding digital production process and the role of the Master Printer. Evolving production processes are also considered in this study as a response to the advancement of digital print technology alongside a practical exploration of what actually constitutes a digital print in this rapidly expanding field of fine art printmaking.This study aims to reveal the inner workings of the digital collaborative process between the artist and Master Printer, and appraise the digital Master Printer’s role.It offers a set of best practice methods for the digital Master Printer developed from this research. The study also considers how the digital print, and the digital print studio may evolve in line with current and future developments in new technologies
    corecore