297 research outputs found

    Printing-while-moving: a new paradigm for large-scale robotic 3D Printing

    Full text link
    Building and Construction have recently become an exciting application ground for robotics. In particular, rapid progress in materials formulation and in robotics technology has made robotic 3D Printing of concrete a promising technique for in-situ construction. Yet, scalability remains an important hurdle to widespread adoption: the printing systems (gantry- based or arm-based) are often much larger than the structure to be printed, hence cumbersome. Recently, a mobile printing system - a manipulator mounted on a mobile base - was proposed to alleviate this issue: such a system, by moving its base, can potentially print a structure larger than itself. However, the proposed system could only print while being stationary, imposing thereby a limit on the size of structures that can be printed in a single take. Here, we develop a system that implements the printing-while-moving paradigm, which enables printing single-piece structures of arbitrary sizes with a single robot. This development requires solving motion planning, localization, and motion control problems that are specific to mobile 3D Printing. We report our framework to address those problems, and demonstrate, for the first time, a printing-while-moving experiment, wherein a 210 cm x 45 cm x 10 cm concrete structure is printed by a robot arm that has a reach of 87 cm.Comment: 6 pages, 7 figur

    Feedforward model with cascading proportional derivative active force control for an articulated arm mobile manipulator

    Get PDF
    This thesis presents an approach for controlling a mobile manipulator (MM) using a two degree of freedom (DOF) controller which essentially comprises a cascading proportional-derivative (CPD) control and feedforward active force control (FAFC). MM possesses both features of mobile platform and industrial arm manipulator. This has greatly improved the performance of MM with increased workspace capacity and better operation dexterity. The added mobility advantage to a MM, however, has increased the complexity of the MM dynamic system. A robust controller that can deal with the added complexity of the MM dynamic system was therefore needed. The AFC which can be considered as one of the novelties in the research creates a torque feedback within the dynamic system to allow for the compensation of sudden disturbances in the dynamic system. AFC also allows faster computational performance by using a fixed value of the estimated inertia matrix (IN) of the system. A feedforward of the dynamic system was also implemented to complement the IN for a better trajectory tracking performance. A localisation technique using Kalman filter (KF) was also incorporated into the CPD-FAFC scheme to solve some MM navigation problems. A simulation and experimental studies were performed to validate the effectiveness of the MM controller. Simulation was performed using a co-simulation technique which combined the simultaneous execution of the MSC Adams and MATLAB/Simulink software. The experimental study was carried out using a custom built MM experimental rig (MMer) which was developed based on the mechatronic approach. A comparative studies between the proposed CPD-FAFC with other type of controllers was also performed to further strengthen the outcome of the system. The experimental results affirmed the effectiveness of the proposed AFC-based controller and were in good agreement with the simulation counterpart, thereby verifying and validating the proposed research concepts and models

    Tracking control of redundant mobile manipulator: An RNN based metaheuristic approach

    Get PDF
    In this paper, we propose a topology of Recurrent Neural Network (RNN) based on a metaheuristic optimization algorithm for the tracking control of mobile-manipulator while enforcing nonholonomic constraints. Traditional approaches for tracking control of mobile robots usually require the computation of Jacobian-inverse or linearization of its mathematical model. The proposed algorithm uses a nature-inspired optimization approach to directly solve the nonlinear optimization problem without any further transformation. First, we formulate the tracking control as a constrained optimization problem. The optimization problem is formulated on position-level to avoid the computationally expensive Jacobian-inversion. The nonholonomic limitation is ensured by adding equality constraints to the formulated optimization problem. We then present the Beetle Antennae Olfactory Recurrent Neural Network (BAORNN) algorithm to solve the optimization problem efficiently using very few mathematical operations. We present a theoretical analysis of the proposed algorithm and show that its computational cost is linear with respect to the degree of freedoms (DOFs), i.e., O(m). Additionally, we also prove its stability and convergence. Extensive simulation results are prepared using a simulated model of IIWA14, a 7-DOF industrial-manipulator, mounted on a differentially driven cart. Comparison results with particle swarm optimization (PSO) algorithm are also presented to prove the accuracy and numerical efficiency of the proposed controller. The results demonstrate that the proposed algorithm is several times (around 75 in the worst case) faster in execution as compared to PSO, and suitable for real-time implementation. The tracking results for three different trajectories; circular, rectangular, and rhodonea paths are presented

    Control of free-flying space robot manipulator systems

    Get PDF
    To accelerate the development of multi-armed, free-flying satellite manipulators, a fixed-base cooperative manipulation facility is being developed. The work performed on multiple arm cooperation on a free-flying robot is summarized. Research is also summarized on global navigation and control of free-flying space robots. The Locomotion Enhancement via Arm Pushoff (LEAP) approach is described and progress to date is presented

    GRASP News Volume 9, Number 1

    Get PDF
    A report of the General Robotics and Active Sensory Perception (GRASP) Laboratory

    Origami-Inspired Printed Robots

    Get PDF
    Robot manufacturing is currently highly specialized, time consuming, and expensive, limiting accessibility and customization. Existing rapid prototyping techniques (e.g., 3-D printing) can achieve complex geometries and are becoming increasingly accessible; however, they are limited to one or two materials and cannot seamlessly integrate active components. We propose an alternative approach called printable robots that takes advantage of available planar fabrication methods to create integrated electromechanical laminates that are subsequently folded into functional 3-D machines employing origami-inspired techniques. We designed, fabricated, and tested prototype origami robots to address the canonical robotics challenges of mobility and manipulation, and subsequently combined these designs to generate a new, multifunctional machine. The speed of the design and manufacturing process as well as the ease of composing designs create a new paradigm in robotic development, which has the promise to democratize access to customized robots for industrial, home, and educational use.National Science Foundation (U.S.). Expeditions Program (Grant CCF-1138967

    Slip Modelling, Estimation and Control of Omnidirectional Wheeled Mobile Robots with Powered Caster Wheels

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 344)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance
    • …
    corecore