15,217 research outputs found

    The potential of additive manufacturing in the smart factory industrial 4.0: A review

    Get PDF
    Additive manufacturing (AM) or three-dimensional (3D) printing has introduced a novel production method in design, manufacturing, and distribution to end-users. This technology has provided great freedom in design for creating complex components, highly customizable products, and efficient waste minimization. The last industrial revolution, namely industry 4.0, employs the integration of smart manufacturing systems and developed information technologies. Accordingly, AM plays a principal role in industry 4.0 thanks to numerous benefits, such as time and material saving, rapid prototyping, high efficiency, and decentralized production methods. This review paper is to organize a comprehensive study on AM technology and present the latest achievements and industrial applications. Besides that, this paper investigates the sustainability dimensions of the AM process and the added values in economic, social, and environment sections. Finally, the paper concludes by pointing out the future trend of AM in technology, applications, and materials aspects that have the potential to come up with new ideas for the future of AM explorations

    Survey on Additive Manufacturing, Cloud 3D Printing and Services

    Full text link
    Cloud Manufacturing (CM) is the concept of using manufacturing resources in a service oriented way over the Internet. Recent developments in Additive Manufacturing (AM) are making it possible to utilise resources ad-hoc as replacement for traditional manufacturing resources in case of spontaneous problems in the established manufacturing processes. In order to be of use in these scenarios the AM resources must adhere to a strict principle of transparency and service composition in adherence to the Cloud Computing (CC) paradigm. With this review we provide an overview over CM, AM and relevant domains as well as present the historical development of scientific research in these fields, starting from 2002. Part of this work is also a meta-review on the domain to further detail its development and structure

    Sustainability principles through educational e-textile kit

    Get PDF
    Innovations in smart textiles technology are on the rise with a promise to add value to the consumer's life (Goodman et al., 2018). However, these innovations and the high development speed involved also raise concerns about environmental issues related to these trends (Van der Velden et al., 2015). Therefore, TTorch project was created which aim is to bring different fields, like electronics and textile engineering, together to create a kit for educational purposes and follow circular economy principles while doing it. TTorch is a creative toy with a development kit for up to 10-year-old children, using e-textile principles. The product kit creates a bridge between engineering and design, by letting the user explore a personal light source and build surroundings to it. The goal of the project is to show how interdisciplinary fields can work together and with that creating different opportunities. This paper gives a short overview of e-textiles, research on e-waste, textile waste and e-textile waste management. Further on it will focus on the necessary collaboration between design, engineering and industry by emphasising difference between core team and network around the core team. The collaboration aim it to create ecological product kit for educational purposes following the concept of STEAM. Discussions will include how collaboration between team members with diverse backgrounds, and surrounding network was necessary to identify specific gap in the market and to evolve the idea from product to development kit

    A simple, low-cost conductive composite material for 3D printing of electronic sensors

    Get PDF
    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes

    Smart Photos

    Get PDF
    Recent technological leaps have been a great catalyst for changing how people interact with the world around us. Specifically, the field of Augmented Reality has led to many software and hardware advances that have formed a digital intermediary between humans and their environment. As of now, Augmented Reality is available to the select few with the means of obtaining Google Glass, Oculus Rifts, and other relatively expensive platforms. Be that as it may, the tech industry\u27s current goal has been integration of this technology into the public\u27s smartphones and everyday devices. One inhibitor of this goal is the difficulty of finding an Augmented Reality application whose usage could satisfy an everyday need or attraction. Augmented reality presents our world in a unique perspective that can be found nowhere else in the natural world. However, visual impact is weak without substance or meaning. The best technology is invisible, and what makes a good product is its ability to fill a void in a person\u27s life. The most important researchers in this field are those who have been augmenting the tasks that most would consider mundane, such as overlaying nutritional information directly onto a meal [4]. In the same vein, we hope to incorporate Augmented Reality into everyday life by unlocking the full potential of a technology often believed to have already have reached its peak. The humble photograph, a classic invention and unwavering enhancement to the human experience, captures moments in space and time and compresses them into a single permanent state. These two-dimensional assortments of pixels give us a physical representation of the memories we form in specific periods of our lives. We believe this representation can be further enhanced in what we like to call a Smart Photo. The idea behind a Smart Photo is to unlock the full potential in the way that people can interact with photographs. This same notion is explored in the field of Virtual Reality with inventions such as 3D movies, which provide a special appeal that ordinary 2D films cannot. The 3D technology places the viewer inside the film\u27s environment. We intend to marry this seemingly mutually exclusive dichotomy by processing 2D photos alongside their 3D counterparts

    Extending the product portfolio with ‘devolved manufacturing’: Methodology and case studies

    Get PDF
    Current research by the developers of rapid prototyping systems is generally focused on improvements in cost, speed and materials to create truly economic and practical economic rapid manufacturing machines. In addition to being potentially smarter/faster/cheaper replacements for existing manufacturing technologies, the next generation of these machines will provide opportunities not only for the design and fabrication of products without traditional constraints, but also for organizing manufacturing activities in new, innovative and previously undreamt of ways. This paper outlines a novel devolved manufacturing (DM) ‘factory-less’ approach to e-manufacturing, which integrates Mass Customization (MC) concepts, Rapid Manufacturing (RM) technologies and the communication opportunities of the Internet/WWW, describes two case studies of different DM implementations and discusses the limitations and appropriateness of each, and finally, draws some conclusions about the technical, manufacturing and business challenges involved

    My boy builds coffins. Future memories of your loved ones

    Get PDF
    The research is focus on the concept of storytelling associated with product design, trying to investigate new ways of designing and a possible future scenario related to the concept of death. MY BOY BUILDS COFFINS is a gravestone made using a combination of cremation’s ashes and resin. It is composed by a series of holes in which the user can stitch a text, in order to remember the loved one. The stitching need of a particular yarn produced in Switzerland using some parts of human body. Project also provides another version which uses LED lights instead of the yarn. The LEDs - thanks to an inductive coupling - will light when It will be posed in the hole. The gravestone can be placed where you want, as if it would create a little altar staff at home. In this way, there is a real connection between the user and the dearly departed

    Identifying smart design attributes for Industry 4.0 customization using a clustering Genetic Algorithm

    Get PDF
    Industry 4.0 aims at achieving mass customization at a mass production cost. A key component to realizing this is accurate prediction of customer needs and wants, which is however a challenging issue due to the lack of smart analytics tools. This paper investigates this issue in depth and then develops a predictive analytic framework for integrating cloud computing, big data analysis, business informatics, communication technologies, and digital industrial production systems. Computational intelligence in the form of a cluster k-means approach is used to manage relevant big data for feeding potential customer needs and wants to smart designs for targeted productivity and customized mass production. The identification of patterns from big data is achieved with cluster k-means and with the selection of optimal attributes using genetic algorithms. A car customization case study shows how it may be applied and where to assign new clusters with growing knowledge of customer needs and wants. This approach offer a number of features suitable to smart design in realizing Industry 4.0

    Trendswatch 2013: Back to the Future

    Get PDF
    TrendsWatch 2013 highlights six trends that CFM's staff and advisors believe are highly significant to museums and their communities, based on our scanning and analysis over the past year. For each trend, we provide a brief summary, list examples of how the trend is playing out in the world, comment on the trend's significance to society and to museums specifically, and suggest ways that museums might respond. We also provide links to additional readings. TrendsWatch provides valuable background and context for your museum's planning and implementation
    • …
    corecore