1,402 research outputs found

    Combining heterogeneous classifiers via granular prototypes.

    Get PDF
    In this study, a novel framework to combine multiple classifiers in an ensemble system is introduced. Here we exploit the concept of information granule to construct granular prototypes for each class on the outputs of an ensemble of base classifiers. In the proposed method, uncertainty in the outputs of the base classifiers on training observations is captured by an interval-based representation. To predict the class label for a new observation, we first determine the distances between the output of the base classifiers for this observation and the class prototypes, then the predicted class label is obtained by choosing the label associated with the shortest distance. In the experimental study, we combine several learning algorithms to build the ensemble system and conduct experiments on the UCI, colon cancer, and selected CLEF2009 datasets. The experimental results demonstrate that the proposed framework outperforms several benchmarked algorithms including two trainable combining methods, i.e., Decision Template and Two Stages Ensemble System, AdaBoost, Random Forest, L2-loss Linear Support Vector Machine, and Decision Tree

    Unsupervised Prototype Adapter for Vision-Language Models

    Full text link
    Recently, large-scale pre-trained vision-language models (e.g. CLIP and ALIGN) have demonstrated remarkable effectiveness in acquiring transferable visual representations. To leverage the valuable knowledge encoded within these models for downstream tasks, several fine-tuning approaches, including prompt tuning methods and adapter-based methods, have been developed to adapt vision-language models effectively with supervision. However, these methods rely on the availability of annotated samples, which can be labor-intensive and time-consuming to acquire, thus limiting scalability. To address this issue, in this work, we design an unsupervised fine-tuning approach for vision-language models called Unsupervised Prototype Adapter (UP-Adapter). Specifically, for the unannotated target datasets, we leverage the text-image aligning capability of CLIP to automatically select the most confident samples for each class. Utilizing these selected samples, we generate class prototypes, which serve as the initialization for the learnable prototype model. After fine-tuning, the prototype model prediction is combined with the original CLIP's prediction by a residual connection to perform downstream recognition tasks. Our extensive experimental results on image recognition and domain generalization show that the proposed unsupervised method outperforms 8-shot CoOp, 8-shot Tip-Adapter, and also the state-of-the-art UPL method by large margins.Comment: Accepted by PRCV 202

    Evolving an optimal decision template for combining classifiers.

    Get PDF
    In this paper, we aim to develop an effective combining algorithm for ensemble learning systems. The Decision Template method, one of the most popular combining algorithms for ensemble systems, does not perform well when working on certain datasets like those having imbalanced data. Moreover, point estimation by computing the average value on the outputs of base classifiers in the Decision Template method is sometimes not a good representation, especially for skewed datasets. Here we propose to search for an optimal decision template in the combining algorithm for a heterogeneous ensemble. To do this, we first generate the base classifier by training the pre-selected learning algorithms on the given training set. The meta-data of the training set is then generated via cross validation. Using the Artificial Bee Colony algorithm, we search for the optimal template that minimizes the empirical 0–1 loss function on the training set. The class label is assigned to the unlabeled sample based on the maximum of the similarity between the optimal decision template and the sample’s meta-data. Experiments conducted on the UCI datasets demonstrated the superiority of the proposed method over several benchmark algorithms

    Color inference from semantic labeling for person search in videos

    Full text link
    We propose an explainable model to generate semantic color labels for person search. In this context, persons are described from their semantic parts, such as hat, shirt, etc. Person search consists in looking for people based on these descriptions. In this work, we aim to improve the accuracy of color labels for people. Our goal is to handle the high variability of human perception. Existing solutions are based on hand-crafted features or learnt features that are not explainable. Moreover most of them only focus on a limited set of colors. We propose a method based on binary search trees and a large peer-labelled color name dataset. This allows us to synthesize the human perception of colors. Using semantic segmentation and our color labeling method, we label segments of pedestrians with their associated colors. We evaluate our solution on person search on datasets such as PCN, and show a precision as high as 80.4%.Comment: 8 pages, 7 figures ICIAR 202

    Complexity vs. performance in granular embedding spaces for graph classification

    Get PDF
    The most distinctive trait in structural pattern recognition in graph domain is the ability to deal with the organization and relations between the constituent entities of the pattern. Even if this can be convenient and/or necessary in many contexts, most of the state-of the art classi\ufb01cation techniques can not be deployed directly in the graph domain without \ufb01rst embedding graph patterns towards a metric space. Granular Computing is a powerful information processing paradigm that can be employed in order to drive the synthesis of automatic embedding spaces from structured domains. In this paper we investigate several classi\ufb01cation techniques starting from Granular Computing-based embedding procedures and provide a thorough overview in terms of model complexity, embedding space complexity and performances on several open-access datasets for graph classi\ufb01cation. We witness that certain classi\ufb01cation techniques perform poorly both from the point of view of complexity and learning performances as the case of non-linear SVM, suggesting that high dimensionality of the synthesized embedding space can negatively affect the effectiveness of these approaches. On the other hand, linear support vector machines, neuro-fuzzy networks and nearest neighbour classi\ufb01ers have comparable performances in terms of accuracy, with second being the most competitive in terms of structural complexity and the latter being the most competitive in terms of embedding space dimensionality

    Hyperbolic Geometry in Computer Vision: A Survey

    Full text link
    Hyperbolic geometry, a Riemannian manifold endowed with constant sectional negative curvature, has been considered an alternative embedding space in many learning scenarios, \eg, natural language processing, graph learning, \etc, as a result of its intriguing property of encoding the data's hierarchical structure (like irregular graph or tree-likeness data). Recent studies prove that such data hierarchy also exists in the visual dataset, and investigate the successful practice of hyperbolic geometry in the computer vision (CV) regime, ranging from the classical image classification to advanced model adaptation learning. This paper presents the first and most up-to-date literature review of hyperbolic spaces for CV applications. To this end, we first introduce the background of hyperbolic geometry, followed by a comprehensive investigation of algorithms, with geometric prior of hyperbolic space, in the context of visual applications. We also conclude this manuscript and identify possible future directions.Comment: First survey paper for the hyperbolic geometry in CV application

    Semi-Weakly Supervised Learning for Label-efficient Semantic Segmentation in Expert-driven Domains

    Get PDF
    Unter Zuhilfenahme von Deep Learning haben semantische Segmentierungssysteme beeindruckende Ergebnisse erzielt, allerdings auf der Grundlage von überwachtem Lernen, das durch die Verfügbarkeit kostspieliger, pixelweise annotierter Bilder limitiert ist. Bei der Untersuchung der Performance dieser Segmentierungssysteme in Kontexten, in denen kaum Annotationen vorhanden sind, bleiben sie hinter den hohen Erwartungen, die durch die Performance in annotationsreichen Szenarien geschürt werden, zurück. Dieses Dilemma wiegt besonders schwer, wenn die Annotationen von lange geschultem Personal, z.B. Medizinern, Prozessexperten oder Wissenschaftlern, erstellt werden müssen. Um gut funktionierende Segmentierungsmodelle in diese annotationsarmen, Experten-angetriebenen Domänen zu bringen, sind neue Lösungen nötig. Zu diesem Zweck untersuchen wir zunächst, wie schlecht aktuelle Segmentierungsmodelle mit extrem annotationsarmen Szenarien in Experten-angetriebenen Bildgebungsdomänen zurechtkommen. Daran schließt sich direkt die Frage an, ob die kostspielige pixelweise Annotation, mit der Segmentierungsmodelle in der Regel trainiert werden, gänzlich umgangen werden kann, oder ob sie umgekehrt ein Kosten-effektiver Anstoß sein kann, um die Segmentierung in Gang zu bringen, wenn sie sparsam eingestetzt wird. Danach gehen wir auf die Frage ein, ob verschiedene Arten von Annotationen, schwache- und pixelweise Annotationen mit unterschiedlich hohen Kosten, gemeinsam genutzt werden können, um den Annotationsprozess flexibler zu gestalten. Experten-angetriebene Domänen haben oft nicht nur einen Annotationsmangel, sondern auch völlig andere Bildeigenschaften, beispielsweise volumetrische Bild-Daten. Der Übergang von der 2D- zur 3D-semantischen Segmentierung führt zu voxelweisen Annotationsprozessen, was den nötigen Zeitaufwand für die Annotierung mit der zusätzlichen Dimension multipliziert. Um zu einer handlicheren Annotation zu gelangen, untersuchen wir Trainingsstrategien für Segmentierungsmodelle, die nur preiswertere, partielle Annotationen oder rohe, nicht annotierte Volumina benötigen. Dieser Wechsel in der Art der Überwachung im Training macht die Anwendung der Volumensegmentierung in Experten-angetriebenen Domänen realistischer, da die Annotationskosten drastisch gesenkt werden und die Annotatoren von Volumina-Annotationen befreit werden, welche naturgemäß auch eine Menge visuell redundanter Regionen enthalten würden. Schließlich stellen wir die Frage, ob es möglich ist, die Annotations-Experten von der strikten Anforderung zu befreien, einen einzigen, spezifischen Annotationstyp liefern zu müssen, und eine Trainingsstrategie zu entwickeln, die mit einer breiten Vielfalt semantischer Information funktioniert. Eine solche Methode wurde hierzu entwickelt und in unserer umfangreichen experimentellen Evaluierung kommen interessante Eigenschaften verschiedener Annotationstypen-Mixe in Bezug auf deren Segmentierungsperformance ans Licht. Unsere Untersuchungen führten zu neuen Forschungsrichtungen in der semi-weakly überwachten Segmentierung, zu neuartigen, annotationseffizienteren Methoden und Trainingsstrategien sowie zu experimentellen Erkenntnissen, zur Verbesserung von Annotationsprozessen, indem diese annotationseffizient, expertenzentriert und flexibel gestaltet werden
    corecore