4,559 research outputs found

    Matrix Relevance Learning From Spectral Data for Diagnosing Cassava Diseases

    Get PDF
    We discuss the use of matrix relevance learning, a popular extension to prototype learning algorithms, applied to a three-class classification task of diagnosing cassava diseases from spectral data. Previously this diagnosis has been done using plant image data taken with a smartphone. However for this method disease symptoms need to be visible. Unfortunately for some cassava diseases, once symptoms have manifested on the aerial part of the plant, the root which is the edible part of the plant has been totally destroyed. This research is premised on the hypothesis that diseased crops without visible symptoms can be detected using spectral information, allowing for early interventions. In this paper, we analyze visible and near-infrared spectra captured from leaves infected with two common cassava diseases (cassava brown streak disease and cassava mosaic virus disease) found in Sub-Saharan Africa. We also take spectra from leaves of healthy plants. The spectral data come with thousands of dimensions, therefore different wavelengths are analyzed in order to identify the most relevant spectral bands for diagnosing these disease. To cope with the nominally high number of input dimensions of data, functional decomposition of the spectra is applied. The classification task is addressed using Generalized Matrix Relevance Learning Vector Quantization and compared with the standard classification techniques performed in the space of expansion coefficients

    Early detection of plant diseases using spectral data

    Get PDF
    Early detection of crop disease is an essential step in food security. Usually, the detection becomes possible in a stage where disease symptoms are already visible on the aerial part of the plant. However, once the disease has manifested in different parts of the plant, little can be done to salvage the situation. Here, we suggest that the use of visible and near infrared spectral information facilitates disease detection in cassava crops before symptoms can be seen by the human eye. To test this hypothesis, we grow cassava plants in a screen house where they are inoculated with disease viruses. We monitor the plants over time collecting both spectra and plant tissue for wet chemistry analysis. Our results demonstrate that suitably trained classifiers are indeed able to detect cassava diseases. Specifically, we consider Generalized Matrix Relevance Learning Vector Quantization (GMLVQ) applied to original spectra and, alternatively, in combination with dimension reduction by Principal Component Analysis (PCA). We show that successful detection is possible shortly after the infection can be confirmed by wet lab chemistry, several weeks before symptoms manifest on the plants

    Computational intelligence & modeling of crop disease data in Africa

    Get PDF
    The thesis presents the application of machine learning techniques to solve a real world challenge related to pest and disease control in the agricultural sector. The research is divided into three areas:i). We developed algorithms to auto-diagnose diseases in crops using an image dataset captured with a mobile phone camera. The study looked into disease incidence and severity measurements from cassava leaf images. We applied computer vision techniques to extract visual features of color and shape combined with classification techniques.(ii). We investigated on the diagnosis of disease in crops before they become symptomatic by use of spectrograms. The experiments of this study involved growing cassava plants in a screen house where they were inoculated with disease viruses and we monitored the plants over time collecting both spectral and plant tissue for wet chemistry analysis at each time step until the plants show disease. Our models in our case GMLVQ were able to detect cassava diseases one week after virus infection can be confirmed by wet lab chemistry, but several weeks before symptoms manifest on the plants.(iii). We investigated on the development of a low-cost 3-D printed smartphone add-on spectrometer that can be used to diagnose crop diseases in the fields. Moving from a commercial spectrometer (1000 USD), the study presented a tool that should be cheap (less than 5 USD ) and usable by smallholder farmers, thus improving their livelihoods through increased crop yields and food security

    Medinoid : computer-aided diagnosis and localization of glaucoma using deep learning

    Get PDF
    Glaucoma is a leading eye disease, causing vision loss by gradually affecting peripheral vision if left untreated. Current diagnosis of glaucoma is performed by ophthalmologists, human experts who typically need to analyze different types of medical images generated by different types of medical equipment: fundus, Retinal Nerve Fiber Layer (RNFL), Optical Coherence Tomography (OCT) disc, OCT macula, perimetry, and/or perimetry deviation. Capturing and analyzing these medical images is labor intensive and time consuming. In this paper, we present a novel approach for glaucoma diagnosis and localization, only relying on fundus images that are analyzed by making use of state-of-the-art deep learning techniques. Specifically, our approach towards glaucoma diagnosis and localization leverages Convolutional Neural Networks (CNNs) and Gradient-weighted Class Activation Mapping (Grad-CAM), respectively. We built and evaluated different predictive models using a large set of fundus images, collected and labeled by ophthalmologists at Samsung Medical Center (SMC). Our experimental results demonstrate that our most effective predictive model is able to achieve a high diagnosis accuracy of 96%, as well as a high sensitivity of 96% and a high specificity of 100% for Dataset-Optic Disc (OD), a set of center-cropped fundus images highlighting the optic disc. Furthermore, we present Medinoid, a publicly-available prototype web application for computer-aided diagnosis and localization of glaucoma, integrating our most effective predictive model in its back-end

    Neural Network for Papaya Leaf Disease Detection

    Get PDF
    The scientific name of papaya is Carica papaya which is an herbaceous perennial in the family Caricaceae grown for its edible fruit. The papaya plant is tree-like,usually unbranched and has hollow stems and petioles. Its origin is Costa Rica, Mexico and USA. The common names of papaya is pawpaw and tree melon. In East Indies and Southern Asia, it is known as tapaya, kepaya, lapaya and kapaya. In Brazil,it is known as Mamao. Papayas are a soft, fleshy fruit that can be used in a wide variety of culinary ways. The possible health benefits of consuming papaya include a reduced risk of heart disease, diabetes, cancer, aiding in digestion, improving blood glucose control in people with diabetes, lowering blood pressure, and improving wound healing. Disease identification in early stage can increase crop productivity and hence lead to economical growth. This work deals with leaf rather than fruit. Images of papaya leaf samples, image compression and image filtering and several image generation techniques are used to obtain several trained data image sets and then hence providing a better product. This paper focus on the power of neural network for detecting diseases in the papaya. Image segmentation is done with the help of k-medoid clustering algorithm which is a partitioning based clustering method

    Combining dissimilarity measures for prototype-based classification

    Get PDF
    Prototype-based classification, identifying representatives of the data and suitable measures of dissimilarity, has been used successfully for tasks where interpretability of the classification is key. In many practical problems, one object is represented by a collection of different subsets of features, that might require different dissimilarity measures. In this paper we present a technique for combining different dissimilarity measures into a Learning Vector Quantization classification scheme for heterogeneous, mixed data. To illustrate the method we apply it to diagnosing viral crop disease in cassava plants from histograms (HSV) and shape features (SIFT) extracted from cassava leaf images. Our results demonstrate the feasibility of the method and increased performance compared to previous approaches
    corecore