1,471 research outputs found

    Prototype system for supporting the incremental modelling of vague geometric configurations

    Get PDF
    In this paper the need for Intelligent Computer Aided Design (Int.CAD) to jointly support design and learning assistance is introduced. The paper focuses on presenting and exploring the possibility of realizing learning assistance in Int.CAD by introducing a new concept called Shared Learning. Shared Learning is proposed to empower CAD tools with more useful learning capabilities than that currently available and thereby provide a stronger interaction of learning between a designer and a computer. Controlled computational learning is proposed as a means whereby the Shared Learning concept can be realized. The viability of this new concept is explored by using a system called PERSPECT. PERSPECT is a preliminary numerical design tool aimed at supporting the effective utilization of numerical experiential knowledge in design. After a detailed discussion of PERSPECT's numerical design support, the paper presents the results of an evaluation that focuses on PERSPECT's implementation of controlled computational learning and ability to support a designer's need to learn. The paper then discusses PERSPECT's potential as a tool for supporting the Shared Learning concept by explaining how a designer and PERSPECT can jointly learn. There is still much work to be done before the full potential of Shared Learning can be realized. However, the authors do believe that the concept of Shared Learning may hold the key to truly empowering learning in Int.CAD

    Realising intelligent virtual design

    Get PDF
    This paper presents a vision and focus for the CAD Centre research: the Intelligent Design Assistant (IDA). The vision is based upon the assumption that the human and computer can operate symbiotically, with the computer providing support for the human within the design process. Recently however the focus has been towards the development of integrated design platforms that provide general support irrespective of the domain, to a number of distributed collaborative designers. This is illustrated within the successfully completed Virtual Reality Ship (VRS) virtual platform, and the challenges are discussed further within the NECTISE, SAFEDOR and VIRTUE projects

    Realising intelligent virtual design

    Get PDF
    This paper presents a vision and focus for the CAD Centre research: the Intelligent Design Assistant (IDA). The vision is based upon the assumption that the human and computer can operate symbiotically, with the computer providing support for the human within the design process. Recently however the focus has been towards the development of integrated design platforms that provide general support irrespective of the domain, to a number of distributed collaborative designers. This is illustrated within the successfully completed Virtual Reality Ship (VRS) virtual platform, and the challenges are discussed further within the NECTISE, SAFEDOR and VIRTUE projects

    Solving constraints within a graph based dependency model by digitising a new process of incrementally casting concrete structures

    Get PDF
    The mechanisation of incrementally casting concrete structures can reduce the economic and environmental cost of the formwork which produces them. Low-tech versions of these forms have been designed to produce structures with cross-sectional continuity, but the design and implementation of complex adaptable formworks remains untenable for smaller projects. Addressing these feasibility issues by digitally modelling these systems is problematic because constraint solvers are the obvious method of modelling the adaptable formwork, but cannot acknowledge the hierarchical relationships created by assembling multiple instances of the system. This thesis hypothesises that these opposing relationships may not be completely disparate and that simple dependency relationships can be used to solve constraints if the real procedure of constructing the system is replicated digitally. The behaviour of the digital model was correlated with the behaviour of physical prototypes of the system which were refined based on digital explorations of its possibilities. The generated output is assessed physically on the basis of its efficiency and ease of assembly and digitally on the basis that permutations can be simply described and potentially built in reality. One of the columns generated by the thesis will be cast by the redesigned system in Lyon at the first F2F (file to factory) continuum workshop

    A virtual environment to support the distributed design of large made-to-order products

    Get PDF
    An overview of a virtual design environment (virtual platform) developed as part of the European Commission funded VRShips-ROPAX (VRS) project is presented. The main objectives for the development of the virtual platform are described, followed by the discussion of the techniques chosen to address the objectives, and finally a description of a use-case for the platform. Whilst the focus of the VRS virtual platform was to facilitate the design of ROPAX (roll-on passengers and cargo) vessels, the components within the platform are entirely generic and may be applied to the distributed design of any type of vessel, or other complex made-to-order products

    Second CLIPS Conference Proceedings, volume 1

    Get PDF
    Topics covered at the 2nd CLIPS Conference held at the Johnson Space Center, September 23-25, 1991 are given. Topics include rule groupings, fault detection using expert systems, decision making using expert systems, knowledge representation, computer aided design and debugging expert systems
    corecore