661 research outputs found

    Raamistik mobiilsete asjade veebile

    Get PDF
    Internet on oma arengus läbi aastate jõudnud järgmisse evolutsioonietappi - asjade internetti (ingl Internet of Things, lüh IoT). IoT ei tähista ühtainsat tehnoloogiat, see võimaldab eri seadmeil - arvutid, mobiiltelefonid, autod, kodumasinad, loomad, virtuaalsensorid, jne - omavahel üle Interneti suhelda, vajamata seejuures pidevat inimesepoolset seadistamist ja juhtimist. Mobiilseadmetest nagu näiteks nutitelefon ja tahvelarvuti on saanud meie igapäevased kaaslased ning oma mitmekülgse võimekusega on nad motiveerinud teadustegevust mobiilse IoT vallas. Nutitelefonid kätkevad endas võimekaid protsessoreid ja 3G/4G tehnoloogiatel põhinevaid internetiühendusi. Kuid kui kasutada seadmeid järjepanu täisvõimekusel, tühjeneb mobiili aku kiirelt. Doktoritöö esitleb energiasäästlikku, kergekaalulist mobiilsete veebiteenuste raamistikku anduriandmete kogumiseks, kasutades kergemaid, energiasäästlikumaid suhtlustprotokolle, mis on IoT keskkonnale sobilikumad. Doktoritöö käsitleb põhjalikult energia kokkuhoidu mobiilteenuste majutamisel. Töö käigus loodud raamistikud on kontseptsiooni tõestamiseks katsetatud mitmetes juhtumiuuringutes päris seadmetega.The Internet has evolved, over the years, from just being the Internet to become the Internet of Things (IoT), the next step in its evolution. IoT is not a single technology and it enables about everything from computers, mobile phones, cars, appliances, animals, virtual sensors, etc. that connect and interact with each other over the Internet to function free from human interaction. Mobile devices like the Smartphone and tablet PC have now become essential to everyday life and with extended capabilities have motivated research related to the mobile Internet of Things. Although, the recently developed Smartphones enjoy the high performance and high speed 3G/4G mobile Internet data transmission services, such high speed performances quickly drain the battery power of the mobile device. This thesis presents an energy efficient lightweight mobile Web service provisioning framework for mobile sensing utilizing the protocols that were designed for the constrained IoT environment. Lightweight protocols provide an energy efficient way of communication. Finally, this thesis highlights the energy conservation of the mobile Web service provisioning, the developed framework, extensively. Several case studies with the use of the proposed framework were implemented on real devices and has been thoroughly tested as a proof-of-concept.https://www.ester.ee/record=b522498

    Intelligent Personal Assistants Solutions in Ubiquitous Environments in the Context of Internet of Things

    Get PDF
    Internet of Things (IoT) will create the opportunity to develop new types of businesses. Every tangible object, biologic or not, will be identified by a unique address, creating a common network composed by billions of devices. Those devices will have different requirements, creating the necessity of finding new mechanisms to satisfy the needs of all the entities within the network. This is one of the main problems that all the scientific community should address in order to make Internet of Things the Future Internet. Currently, IoT is used in a lot of projects involving Wireless Sensor Networks (WSNs). Sensors are generally cheap and small devices able to generate useful information from physical indicators. They can be used on smart home scenarios, or even on healthcare environments, turning sensors into useful devices to accomplish the goals of many use case scenarios. Sensors and other devices with some reasoning capabilities, like smart objects, can be used to create smart environments. The interaction between the objects in those scenarios and humans can be eased by the inclusion of Intelligent Personal Assistants (IPAs). Currently, IPAs have good reasoning capabilities, improving the assistance they give to their owners. Artificial intelligence (AI), new learning mechanisms, and the evolution assisted in speech technology also contributed to this improvement. The integration of IPAs in IoT scenarios can become a case of great success. IPAs will comprehend the behavior of their owners not only through direct interactions, but also by the interactions they have with other objects in the environment. This may create ubiquitous communication scenarios where humans act as passive elements, being adequately informed of all the aspects of interest that surrounds them. The communication between IPAs and other objects in their surrounding environment may use gateways for traffic forwarding. On ubiquitous environments devices can be mobile or static. For example, in smart home scenarios, objects are generally static, being always on the same position. In mobile health scenarios, objects can move from one place to another. To turn IPAs useful on all types of environments, static and mobile gateways should be developed. On this dissertation, a novel mobile gateway solution for an IPA platform inserted on an IoT context is proposed. A mobile health scenario was chosen. Then, a Body Sensor Network (BSN) is always monitoring a person, giving the real time feedback of his/her health status to another person responsible by him (designated caretaker). On this scenario, a mobile gateway is needed to forward the traffic between the BSN and the IPA of the caretaker. Therefore, the IPA is able to give warnings about the health status of the person under monitoring, in real time. The proposed system is evaluated, demonstrated, and validated through a prototype, where the more important aspects for IPAs and IoT networks are considered

    Multifactor authentication using smartphone as token

    Get PDF
    Biometrics are a field of study with relevant developments in the last decade. Specifically, electrocardiogram (ECG) based biometrics are now deemed a reliable source of identification. One of the major advances in this technology was the improvements in off-the-person authentication, by requiring nothing more than dry electrodes or conductive fabrics to acquire an ECG signal in a non-intrusive way through the user’s hands. However, identification still has a relatively poor performance when using large user databases. In this dissertation we suggest using ECG authentication associated with a smartphone security token in order to improve performance and decrease the time required for the recognition. We develop this technique in a user authentication scenario for a Windows login. We developed our solution using both normal Bluetooth (BT) and Bluetooth Low Energy (BLE) technologies to preserve phone battery; also, we develop apps for Windows Phone and Android, due to limitations detected. Additionally, we took advantage of the Intel Edison’s mobility features to create a more versatile environment. Results proved our solution to be possible. We executed a series of tests, through which we observed an improvement in authentication times when compared to a simple ECG identification scenario. Also, ECG performance in terms of false-negatives and false-positives is also increased.A biometria é uma área de estudo que observou desenvolvimentos relevantes na última década. Em específico, a biometria baseada no eletrocardiograma (ECG) é atualmente considerada uma fonte de identificação confiável. Um dos maiores avanços nesta tecnologia consiste na evolução da autenticação off-the-person, que permite realizar a aquisição de sinal de forma não intrusiva usando as mãos do utilizador. Contudo, a identificação através deste método ainda apresenta uma performance relativamente baixa quando usada uma base de dados de dimensão acima das dezenas. Nesta dissertação sugerimos usar a autenticação ECG associada a um telemóvel a funcionar como security token com o objectivo de melhorar a performance e diminuir o tempo necessário para o reconhecimento. Para isso, desenvolvemos a nossa solução usando a tecnologia Bluetooth (BL) clássico, mas também Bluetooth Low Energy (BLE) para preservar a bateria do telemóvel; além disto, desenvolvemos as aplicações em Windows Phone e também Android, dadas as limitações que encontrámos. Para criar um ambiente mais versátil e móvel, usámos a recente plataforma Intel Edison. Os resultados obtidos provam que a nossa solução é viável. Executámos uma série de testes, nos quais observámos uma melhoria nos tempos associados à autenticação quando comparados com o cenário clássico de identificação por ECG. Adicionalmente, a performance do ECG no que diz respeito ao número de falsos-negativos e falsos-positivos apresentou também melhoria

    Software-Defined Lighting.

    Full text link
    For much of the past century, indoor lighting has been based on incandescent or gas-discharge technology. But, with LED lighting experiencing a 20x/decade increase in flux density, 10x/decade decrease in cost, and linear improvements in luminous efficiency, solid-state lighting is finally cost-competitive with the status quo. As a result, LED lighting is projected to reach over 70% market penetration by 2030. This dissertation claims that solid-state lighting’s real potential has been barely explored, that now is the time to explore it, and that new lighting platforms and applications can drive lighting far beyond its roots as an illumination technology. Scaling laws make solid-state lighting competitive with conventional lighting, but two key features make solid-state lighting an enabler for many new applications: the high switching speeds possible using LEDs and the color palettes realizable with Red-Green-Blue-White (RGBW) multi-chip assemblies. For this dissertation, we have explored the post-illumination potential of LED lighting in applications as diverse as visible light communications, indoor positioning, smart dust time synchronization, and embedded device configuration, with an eventual eye toward supporting all of them using a shared lighting infrastructure under a unified system architecture that provides software-control over lighting. To explore the space of software-defined lighting (SDL), we design a compact, flexible, and networked SDL platform to allow researchers to rapidly test new ideas. Using this platform, we demonstrate the viability of several applications, including multi-luminaire synchronized communication to a photodiode receiver, communication to mobile phone cameras, and indoor positioning using unmodified mobile phones. We show that all these applications and many other potential applications can be simultaneously supported by a single lighting infrastructure under software control.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111482/1/samkuo_1.pd

    A Study of Mobility Support in Wearable Health Monitoring Systems: Design Framework

    Get PDF
    International audienceThe aim of this work is to investigate main techniques and technologies enabling user's mobility in wearable health monitoring systems. For this, design requirements for key enabling mechanisms are pointed out, and a number of conceptual and technological recommendations are presented. The whole is schematized and presented into the form of a design framework covering design layers and taking in consideration patient context constraints. This work aspires to bring a further contribution for the conception and possibly the evaluation of health monitoring systems with full support of mobility offering freedom to users while enhancing their life qualit

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    이기종 IoT 기기간 협력을 통한 네트워크 성능 향상

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2022. 8. 박세웅.The Internet of Things (IoT) has become a daily life by pioneering applications in various fields. In this dissertation, we consider increasing transmission data rate with energy efficiency, extending transmission coverage with low power, and improving reliability in congested frequency bands as three challenges to expanding IoT applications. We address two issues to overcome these challenges. First, we design a layered network system with a new structure that combines Bluetooth Low Energy (BLE) and Wi-Fi networks in a multi-hop network. Based on the system, we propose methods to increase data rate with energy efficiency and extend transmission coverage in a low-power situation. We implement the proposed system in the Linux kernel and evaluate the performance through an indoor testbed. As a result, we confirmed that the proposed system supports high data traffic and reduces average power consumption in the testbed compared to the existing single BLE/Wi-Fi ad-hoc network in a multi-hop situation. Second, we tackle the adaptive frequency hopping (AFH) problem of BLE through cross-technology communication (CTC) and channel weighting. We design the AFH scheme that weights the channels used by BLE devices with improving reliability in the congested bands of both Wi-Fi and BLE devices. We evaluate the proposed scheme through prototype experiments and simulations, confirming that the proposed scheme increases the packet reception rate of BLE in the congested ISM band compared to the existing AFH algorithm.사물인터넷은 현재 다양한 영역에서 application을 개척하여 생활화되어 왔다. 이 학위 논문에서는 사물인터넷의 응용 사례 확장을 위해 에너지 효율적인 전송 속도 향상, 저전력 상황에서의 전송 범위 확장, 혼잡한 대역에서의 신뢰성 향상을 새로운 도전 과제로 삼고, 이러한 도전 과제를 극복할 두 가지 주제를 다룬다. 첫째, 다중 홉 네트워크 상황에서의 블루투스 저전력과 Wi-Fi 네트워크를 결합 한 새로운 구조의 계층적 네트워크 시스템을 설계하고 이에 기반한 에너지 효율적인 전송 속도 향상 및 저전력 상황에서의 전송 범위확장을 제안한다. 제안된 시스템은 Linux 커널에 구현하여 실내 테스트베드를 통해 성능을 평가한다. 결과적으로 제안 한 기법이 다중 홉 상황에서 기존 블루투스 저전력/Wi-Fi 단일 ad-hoc 네트워크와 비교하여 높은 데이터 트래픽을 지원하며, 테스트베드에서의 평균 전력 소비를 줄 이는 것을 확인한다. 둘째, Cross-technology Communication (CTC)과 채널 가중치를 통한 블루투스 저전력의 Adaptive Frequency Hopping (AFH) 문제를 해결한다. 최종적으로 블루투스 저전력 기기가 사용하는 채널에 가중치를 두는 AFH 기법을 설계하여 Wi-Fi 와 블루투스 저전력 기기가 모두 혼잡한 대역에서의 신뢰성을 향상한다. 프로토타입 실험과 시뮬레이션을 통해 제안한 기법이 기존의 AFH 기법과 비교하여 혼잡한 ISM 대역에서 블루투스 저전력의 패킷 수신율을 증가시키는 것을 확인한다.1 Introduction 1 1.1 Motivation 1 1.2 Contributions and Outline 2 2 Wi-BLE: On Cooperative Operation of Wi-Fi and Bluetooth Low Energy under IPv6 4 2.1 Introduction 4 2.2 Related Work 7 2.2.1 Multihop Connectivity for Wi-Fi or BLE 7 2.2.2 Multi-radio Operation 11 2.3 System Overview 13 2.3.1 Control Plane 13 2.3.2 Data Plane 16 2.3.3 Overall Procedure 16 2.4 MABLE: AODV Routing over BLE 17 2.4.1 BLE Channel Utilization 17 2.4.2 Joint Establishment of Route and Connection 20 2.4.3 Link Quality Metric for BLE Data Channels 22 2.4.4 Bi-directional Route Error Propagation 25 2.5 Wi-BLE: Wi-Fi Ad-hoc over BLE 27 2.5.1 Radio Selection 27 2.5.2 Routing and Radio Wake-up for Wi-Fi 30 2.6 Evaluation 32 2.6.1 BLE Routing 33 2.6.2 Wi-Fi Routing over BLE 35 2.6.3 Radio Selection 38 2.7 Summary 40 3 WBC-AFH: Direct Wi-Fi to BLE Communication based AFH 41 3.1 Introduction 41 3.2 Background 45 3.2.1 Frequency hopping in BLE 45 3.2.2 Cross Technology Communication 47 3.3 Proposed AFH 49 3.3.1 CTC based informing 50 3.3.2 Weighted channel select 51 3.3.3 Hopping set size optimization 52 3.3.4 WBC-AFH 54 3.4 Evaluation 57 3.4.1 Setup 57 3.4.2 Robustness 60 3.4.3 Reliability 61 3.5 Future Work 65 3.6 Summary 66 4 Conclusion 67박
    corecore