383 research outputs found

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    The Role of the Central Nervous System in the Integration of Proprioceptive Information

    Get PDF
    The proprioceptive system provides feedback on human performance that makes it possible to learn and perform novel tasks. Proprioception predominately arises in the peripheral nervous system at the muscle spindle organ. Mechanical stimulus such as vibration has been implicated in altering muscle spindle afferent signals used as feedback. Researchers have utilized this understanding to document gross performance changes resulting from a muscle spindle disruption paradigm. Findings of this work have demonstrated that the altered proprioceptive feedback alters performance both during and after vibration exposure. This has also led many to postulate that altered proprioceptive feedback due to environmental working conditions may be responsible for many incidences of musculoskeletal injury, including low back pain. In order to more fully understand how proprioceptive feedback is integrated into a motor response it was required to investigate activity within the central nervous system, itself the target of the spindle afferent, both before and after receiving a modulate afferent. We developed a protocol based on measures of average velocity to test for this activity. Our investigation began we examining whether or not average velocity, in the form of seated sway velocity, would be sensitive to applied vibration. We found that while vibration was applied; mean sway speed increased significantly above pre vibration levels, regardless of feedback and task difficulty. A computer based pursuit task was then implemented in order to investigate performance relative to timing of vibration exposure. Our results revealed a significant decrease in pursuit velocity during vibration from pre-vibration velocity. Additionally, subjects demonstrated an equal magnitude but opposite increase in pursuit speed after vibration was removed. This protocol was then replicated in a functional-MRI to compare the gross motor pursuit task performance with the corresponding BOLD imaging data. We observed a similar decrease/increase pattern of joystick pursuit velocity. The corresponding cortical activity revealed patterns of inhibition consistent with cognitive inhibition. The current findings support proprioception as a central inhibitory control mechanism that shifts cortical networks dependent on available sensory stimulus

    Using Stick-Slip to provide directional forces and kinesthetic feedback on interactive display surfaces

    Get PDF
    Modern interactive surfaces and displays provide powerful and highly efficient visual and auditory human-computer interfaces. However, the usage of haptics is still in its infancy. Often limited to primitive vibrotactile warning or notification signals, the possibilities of haptics to communicate complex images and information have not yet been realized. Based on research done in previous years, new methods have been developed to deliver more specific tactile information about objects and their surfaces. Nevertheless, the kinesthetic sense, which enables to detect different object properties such as weight, inertia and impedance, is rarely discussed as a part of a haptic system. Relying on kinesthetic information has been proven to be beneficial in order to detect, recognize and interpret haptic images in the virtual world. This has been achieved by using linkage-based multi-dimensional manipulators, exoskeletons or robotic arms. Based on the increased usage of mobile devices, new challenges are arising, especially considering linkage-free technologies. To approach this challenge, this thesis describes a system which is able to apply directional forces, linkage-free to a stylus tip, in order to control user behavior. The stick-slip phenomenon has been used as the basic technique to deliver directional forces in the absence of kinematic chains and mechanical linkages. Based on the theoretical approach, the prototype requirements were specified and the configuration of the system (mechanical components, actuators and control parameters) were discussed. By using the resulting system specification, three mockups were developed which led to a final system implementation. During the course of this research, it was demonstrated that it is possible to generate directional forces on an interactive display in order to move a stylus linkage-free over the touchscreen in a fully controlled and efficient manner. The technology described in this thesis opens new possibilities for interacting with displays. The developed system can be used to provide continuously-supervised learning or feed forward systems which predict the user behavior and modify kinesthetic signals

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    A Systematic Review of Weight Perception in Virtual Reality: Techniques, Challenges, and Road Ahead

    Get PDF
    Weight is perceived through the combination of multiple sensory systems, and a wide range of factors – including touch, visual, and force senses – can influence the perception of heaviness. There have been remarkable advancements in the development of haptic interfaces throughout the years. However, a number of challenges limit the progression to enable humans to sense the weight in virtual reality (VR). This article presents an overview of the factors that influence how weight is perceived and the phenomenon that contributes to various types of weight illusions. A systematic review has been undertaken to assess the development of weight perception in VR, underlying haptic technology that renders the mass of a virtual object, and the creation of weight perception through pseudo-haptic. We summarize the approaches from the perspective of haptic and pseudo-haptic cues that exhibit the sense of weight such as force, skin deformation, vibration, inertia, control–display ratio, velocity, body gestures, and audio–visual representation. The design challenges are underlined, and research gaps are discussed, including accuracy and precision, weight discrimination, heavyweight rendering, and absolute weight simulation. This article is anticipated to aid in the development of more realistic weight perception in VR and stimulated new research interest in this topic

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Human Machine Interfaces for Teleoperators and Virtual Environments

    Get PDF
    In Mar. 1990, a meeting organized around the general theme of teleoperation research into virtual environment display technology was conducted. This is a collection of conference-related fragments that will give a glimpse of the potential of the following fields and how they interplay: sensorimotor performance; human-machine interfaces; teleoperation; virtual environments; performance measurement and evaluation methods; and design principles and predictive models

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on fifteen research projects.National Institutes of Health Grant RO1 DC00117National Institutes of Health Grant RO1 DC02032National Institutes of Health Contract P01-DC00361National Institutes of Health Contract N01-DC22402National Institutes of Health/National Institute on Deafness and Other Communication Disorders Grant 2 R01 DC00126National Institutes of Health Grant 2 R01 DC00270National Institutes of Health Contract N01 DC-5-2107National Institutes of Health Grant 2 R01 DC00100U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-94-C-0087U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-95-K-0014U.S. Navy - Office of Naval Research/Naval Air Warfare Center Grant N00014-93-1-1399U.S. Navy - Office of Naval Research/Naval Air Warfare Center Grant N00014-94-1-1079U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research Grant N00014-92-J-1814National Institutes of Health Grant R01-NS33778U.S. Navy - Office of Naval Research Grant N00014-88-K-0604National Aeronautics and Space Administration Grant NCC 2-771U.S. Air Force - Office of Scientific Research Grant F49620-94-1-0236U.S. Air Force - Office of Scientific Research Agreement with Brandeis Universit

    Haptics Rendering and Applications

    Get PDF
    There has been significant progress in haptic technologies but the incorporation of haptics into virtual environments is still in its infancy. A wide range of the new society's human activities including communication, education, art, entertainment, commerce and science would forever change if we learned how to capture, manipulate and reproduce haptic sensory stimuli that are nearly indistinguishable from reality. For the field to move forward, many commercial and technological barriers need to be overcome. By rendering how objects feel through haptic technology, we communicate information that might reflect a desire to speak a physically- based language that has never been explored before. Due to constant improvement in haptics technology and increasing levels of research into and development of haptics-related algorithms, protocols and devices, there is a belief that haptics technology has a promising future

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility
    corecore