952 research outputs found

    Proton magnetic resonance spectroscopy in multiple sclerosis.

    Get PDF
    Proton magnetic resonance spectroscopy ((1)H-MRS) provides tissue metabolic information in vivo. This article reviews the role of MRS-determined metabolic alterations in lesions, normal-appearing white matter, gray matter, and spinal cord in advancing our knowledge of pathologic changes in multiple sclerosis (MS). In addition, the role of MRS in objectively evaluating therapeutic efficacy is reviewed. This potential metabolic information makes MRS a unique tool to follow MS disease evolution, understand its pathogenesis, evaluate the disease severity, establish a prognosis, and objectively evaluate the efficacy of therapeutic interventions

    Quantitative MRI in leukodystrophies

    Get PDF
    Leukodystrophies constitute a large and heterogeneous group of genetic diseases primarily affecting the white matter of the central nervous system. Different disorders target different white matter structural components. Leukodystrophies are most often progressive and fatal. In recent years, novel therapies are emerging and for an increasing number of leukodystrophies trials are being developed. Objective and quantitative metrics are needed to serve as outcome measures in trials. Quantitative MRI yields information on microstructural properties, such as myelin or axonal content and condition, and on the chemical composition of white matter, in a noninvasive fashion. By providing information on white matter microstructural involvement, quantitative MRI may contribute to the evaluation and monitoring of leukodystrophies. Many distinct MR techniques are available at different stages of development. While some are already clinically applicable, others are less far developed and have only or mainly been applied in healthy subjects. In this review, we explore the background, current status, potential and challenges of available quantitative MR techniques in the context of leukodystrophies

    Magnetic resonance imaging of glutamate in neuroinflammation

    Get PDF
    AbstractInflammation in central nervous system (CNS) is one of the most severe diseases, and also plays an impellent role in some neurodegenerative diseases. Glutamate (Glu) has been considered relevant to the pathogenesis of neuroinflammation. In order to diagnose neuroinflammation incipiently and precisely, we review the pathobiological events in the early stages of neuroinflammation, the interactions between Glu and neuroinflammation, and two kinds of magnetic resonance techniques of imaging Glu (chemical exchange saturation transfer and magnetic resonance spectroscopy)

    Widespread extrahippocampal NAA/(Cr+Cho) abnormalities in TLE with and without mesial temporal sclerosis

    Get PDF
    MR spectroscopy has demonstrated extrahippocampal NAA/(Cr+Cho) reductions in medial temporal lobe epilepsy with (TLE-MTS) and without (TLE-no) mesial temporal sclerosis. Because of the limited brain coverage of those previous studies, it was, however, not possible to assess differences in the distribution and extent of these abnormalities between TLE-MTS and TLE-no. This study used a 3D whole brain echoplanar spectroscopic imaging (EPSI) sequence to address the following questions: (1) Do TLE-MTS and TLE-no differ regarding severity and distribution of extrahippocampal NAA/(Cr+Cho) reductions? (2) Do extrahippocampal NAA/(Cr+Cho) reductions provide additional information for focus lateralization? Forty-three subjects (12 TLE-MTS, 13 TLE-no, 18 controls) were studied with 3D EPSI. Statistical parametric mapping (SPM2) was used to identify regions of significantly decreased NAA/(Cr+Cho) in TLE groups and in individual patients. TLE-MTS and TLE-no had widespread extrahippocampal NAA/(Cr+Cho) reductions. NAA/(Cr+Cho) reductions had a bilateral fronto-temporal distribution in TLE-MTS and a more diffuse, less well defined distribution in TLE-no. Extrahippocampal NAA/(Cr+Cho) decreases in the single subject analysis showed a large inter-individual variability and did not provide additional focus lateralizing information. Extrahippocampal NAA/(Cr+Cho) reductions in TLE-MTS and TLE-no are neither focal nor homogeneous. This reduces their value for focus lateralization and suggests a heterogeneous etiology of extrahippocampal spectroscopic metabolic abnormalities in TLE

    Neuroimaging in Multiple Sclerosis

    Get PDF

    7T Magnetic Resonance Spectroscopy of Non-Lesional Temporal Lobe Epilepsy

    Get PDF
    Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy, and one that is generally amenable to surgical treatment when surgery is necessary. Unfortunately, roughly 25-30% of the patient population have no visible lesions on clinical MRI scans. Without anatomical abnormalities to help guide surgical resection, the success of surgical treatment decreases substantially. However, metabolic abnormalities may exist that could allow for accurate localization of epileptic tissue in this cohort. Magnetic resonance spectroscopy (MRS) is a technique that can detect and measure the concentration of metabolically important molecules within tissue, giving insight into the underlying cellular metabolism. In this thesis, non-lesional TLE patients were studied and compared with control subjects using single voxel MRS at a magnetic field strength of 7T for the first time. We hypothesized that metabolite changes in the hippocampus would be associated with seizure lateralization. Non-lesional patients showed altered levels of creatine and choline when compared to healthy controls. These results were in agreement with prior work in the literature showing non-lesional TLE is primarily a result of glial cell proliferation without neuronal atrophy. However, in the patient cohort studied, these metabolites did not effectively lateralize seizure origin, potentially due to the varied underlying pathologies within the patient group
    corecore