80 research outputs found

    Protograph LDPC Based Distributed Joint Source Channel Coding

    Get PDF
    该文提出一种基于原模图低密度奇偶校验(P-LDPC)码的分布式联合信源信道编译码系统方案。该方案编码端,分布式信源发送部分信息位及校验位以同时实; 现压缩及纠错功能;译码端,联合迭代信源信道译码的运用进一步发掘信源的相关性以获得额外的编码增益。此外,论文研究了所提方案在译码端未知相关性系数的; 译码算法。仿真结果表明,所提出的基于P-LDPC码的分布式联合信源信道编译码方案在外部迭代次数不大的情况可以获得较大的性能增益,并且相关性系数在; 译码端已知和未知系统性能基本相当。This paper proposes a Distributed Joint Source-Channel Coding (DJSCC); scheme using Protograph Low Density Parity Check (P-LDPC) code. In the; proposed scheme, the distributed source encoder sends some information; bits together with the parity bits to simultaneously achieve both; distributed compression and channel error correction. Iterative joint; decoding is introduced to further exploit the source correlation.; Moreover, the proposed scheme is investigated when the correlation; between sources is not known at the decoder. Simulation results indicate; that the proposed DJSCC scheme can obtain relatively large additional; coding gains at a relatively small number of global iterations, and the; performance for unknown correlated sources is almost the same as that; for known correlated sources since correlation can be estimated jointly; with the iterative decoding process.福建省自然科学基金; 国家自然科学基

    Joint Design of Source-Channel Codes with Linear Source Encoding Complexity and Good Channel Thresholds Based on Double-Protograph LDPC Codes

    Full text link
    We propose the use of a lower or upper triangular sub-base matrix to replace the identity matrix in the source-check-channel-variable linking protomatrix of a double-protograph low-density parity-check joint-source-channel code (DP-LDPC JSCC). The elements along the diagonal of the proposed lower or upper triangular sub-base matrix are assigned as "1" and the other non-zero elements can take any non-negative integral values. Compared with the traditional DP-LDPC JSCC designs, the new designs show a theoretical channel threshold improvement of up to 0.41 dB and a simulated source symbol error rate improvement of up to 0.5 dB at an error rate of 1e-6.Comment: 7 pages, 5 figures, 3 tables, to appear in IEEE Communications Letter

    Near-capacity fixed-rate and rateless channel code constructions

    No full text
    Fixed-rate and rateless channel code constructions are designed for satisfying conflicting design tradeoffs, leading to codes that benefit from practical implementations, whilst offering a good bit error ratio (BER) and block error ratio (BLER) performance. More explicitly, two novel low-density parity-check code (LDPC) constructions are proposed; the first construction constitutes a family of quasi-cyclic protograph LDPC codes, which has a Vandermonde-like parity-check matrix (PCM). The second construction constitutes a specific class of protograph LDPC codes, which are termed as multilevel structured (MLS) LDPC codes. These codes possess a PCM construction that allows the coexistence of both pseudo-randomness as well as a structure requiring a reduced memory. More importantly, it is also demonstrated that these benefits accrue without any compromise in the attainable BER/BLER performance. We also present the novel concept of separating multiple users by means of user-specific channel codes, which is referred to as channel code division multiple access (CCDMA), and provide an example based on MLS LDPC codes. In particular, we circumvent the difficulty of having potentially high memory requirements, while ensuring that each user’s bits in the CCDMA system are equally protected. With regards to rateless channel coding, we propose a novel family of codes, which we refer to as reconfigurable rateless codes, that are capable of not only varying their code-rate but also to adaptively modify their encoding/decoding strategy according to the near-instantaneous channel conditions. We demonstrate that the proposed reconfigurable rateless codes are capable of shaping their own degree distribution according to the nearinstantaneous requirements imposed by the channel, but without any explicit channel knowledge at the transmitter. Additionally, a generalised transmit preprocessing aided closed-loop downlink multiple-input multiple-output (MIMO) system is presented, in which both the channel coding components as well as the linear transmit precoder exploit the knowledge of the channel state information (CSI). More explicitly, we embed a rateless code in a MIMO transmit preprocessing scheme, in order to attain near-capacity performance across a wide range of channel signal-to-ratios (SNRs), rather than only at a specific SNR. The performance of our scheme is further enhanced with the aid of a technique, referred to as pilot symbol assisted rateless (PSAR) coding, whereby a predetermined fraction of pilot bits is appropriately interspersed with the original information bits at the channel coding stage, instead of multiplexing pilots at the modulation stage, as in classic pilot symbol assisted modulation (PSAM). We subsequently demonstrate that the PSAR code-aided transmit preprocessing scheme succeeds in gleaning more information from the inserted pilots than the classic PSAM technique, because the pilot bits are not only useful for sounding the channel at the receiver but also beneficial for significantly reducing the computational complexity of the rateless channel decoder
    corecore