5,312 research outputs found

    LPDQ: a self-scheduled TDMA MAC protocol for one-hop dynamic lowpower wireless networks

    Get PDF
    Current Medium Access Control (MAC) protocols for data collection scenarios with a large number of nodes that generate bursty traffic are based on Low-Power Listening (LPL) for network synchronization and Frame Slotted ALOHA (FSA) as the channel access mechanism. However, FSA has an efficiency bounded to 36.8% due to contention effects, which reduces packet throughput and increases energy consumption. In this paper, we target such scenarios by presenting Low-Power Distributed Queuing (LPDQ), a highly efficient and low-power MAC protocol. LPDQ is able to self-schedule data transmissions, acting as a FSA MAC under light traffic and seamlessly converging to a Time Division Multiple Access (TDMA) MAC under congestion. The paper presents the design principles and the implementation details of LPDQ using low-power commercial radio transceivers. Experiments demonstrate an efficiency close to 99% that is independent of the number of nodes and is fair in terms of resource allocation.Peer ReviewedPostprint (author’s final draft

    Efficient time synchronized one-time password scheme to provide secure wake-up authentication on wireless sensor networks

    Get PDF
    In this paper we propose Time Synchronized One-Time-Password scheme to provide secure wake up authentication. The main constraint of wireless sensor networks is their limited power resource that prevents us from using radio transmission over the network to transfer the passwords. On the other hand computation power consumption is insignificant when compared to the costs associated with the power needed for transmitting the right set of keys. In addition to prevent adversaries from reading and following the timeline of the network, we propose to encrypt the tokens using symmetric encryption to prevent replay attacks.Comment: International Journal Of Advanced Smart Sensor Network Systems (IJASSN), Vol 3, No.1, January 2013 http://airccse.org/journal/ijassn/papers/3113ijassn01.pd

    Energy Efficient Protocols for Active RFID

    Get PDF
    Radio frequency identification (RFID) systems come in different flavours; passive, active, semi-passive, or semi-active. Those different types of RFID are supported by different, internationally accepted protocol standards as well as by several accepted proprietary protocols. Even though the diversity is large between the flavours and between the standards, the RFID technology has evolved to be a mature technology, which is ready to be used in a large variety of applications. This thesis explores active RFID technology and how to develop and apply data communication protocols that are energy efficient and which comply with the different application constraints. The use of RFID technology is growing rapidly, and today mostly “passive” RFID systems are used because no onboard energy source is needed on the transponder (tag). However, the use of “active” RFID-tags with onboard power sources adds a range of opportunities not possible with passive tags. Besides that Active RFID offers increased working distance between the interrogator (RFID-reader) and tags, the onboard power source also enables the tags to do sensor measurements, calculations and storage even when no RFID-reader is in the vicinity of the tags. To obtain energy efficiency in an Active RFID system the communication protocol to be used should be carefully designed. This thesis describes how energy consumption can be calculated, to be used in protocol definition, and how evaluation of protocols in this respect can be made. The performance of such a new protocol, in terms of energy efficiency, aggregated throughput, delay, and number of collisions in the radio channel is evaluated and compared to an existing, commercially available protocol for Active RFID, as well as to the IEEE standard 802.15.4 (used, e.g., in the Zigbee medium-access layer). Simulations show that, by acknowledging the payload and using deep sleep mode on the tag, the lifetime of a tag is increased. For all types of protocols using a radio channel, when arbitrating information, it is obvious that the utilization of that channel is maximized when no collisions occur. To avoid and minimize collisions in the media it is possible to intercept channel interference by using carrier sense technology. The knowledge that the channel is occupied should result in a back-off and a later retry, instead of persistently listening to the channel which would require constant energy consumption. We study the effect on tag energy cost and packet delay incurred by some typical back-off algorithms (constant, linear, and exponential) used in a contention based CSMA/CA (Carrier Sense Multiple Access/ Collision Avoidance) protocol for Active RFID communication. The study shows that, by selecting the proper back-off algorithm coefficients (based on the number of tags and the application constraints), i.e., the initial contention window size and back-off interval coefficient, the tag energy consumption and read-out delays can be significantly lowered. The initial communication between reader and tag, on a control channel, establishes those important protocol parameters in the tag so that it tries to deliver its information according to the current application scenario in an energy efficient way. The decision making involved in calculating the protocol parameters is conducted in the local RFID-reader for highest efficiency. This can be done by using local statistics or based on knowledge provided by the logistic backbone databases. As the CMOS circuit technology evolves, new possibilities arise for mass production of low price and long life active tags. The use of wake-up radio technology makes it possible for active tags to react on an RFID-reader at any time, in contrast to tags with cyclic wake-up behaviour. The two main drawbacks with an additional wake-up circuit in a tag are the added die area and the added energy consumption. Within this project the solution is a complete wake-up radio transceiver consisting of only one hi-frequency very low power, and small area oscillator. To support this tag topology we propose and investigate a novel reader-tag communication protocol, the frequency binary tree protocol

    Wireless communication, identification and sensing technologies enabling integrated logistics: a study in the harbor environment

    Get PDF
    In the last decade, integrated logistics has become an important challenge in the development of wireless communication, identification and sensing technology, due to the growing complexity of logistics processes and the increasing demand for adapting systems to new requirements. The advancement of wireless technology provides a wide range of options for the maritime container terminals. Electronic devices employed in container terminals reduce the manual effort, facilitating timely information flow and enhancing control and quality of service and decision made. In this paper, we examine the technology that can be used to support integration in harbor's logistics. In the literature, most systems have been developed to address specific needs of particular harbors, but a systematic study is missing. The purpose is to provide an overview to the reader about which technology of integrated logistics can be implemented and what remains to be addressed in the future

    Energy Management in RFID-Sensor Networks: Taxonomy and Challenges

    Get PDF
    Ubiquitous Computing is foreseen to play an important role for data production and network connectivity in the coming decades. The Internet of Things (IoT) research which has the capability to encapsulate identification potential and sensing capabilities, strives towards the objective of developing seamless, interoperable and securely integrated systems which can be achieved by connecting the Internet with computing devices. This gives way for the evolution of wireless energy harvesting and power transmission using computing devices. Radio Frequency (RF) based Energy Management (EM) has become the backbone for providing energy to wireless integrated systems. The two main techniques for EM in RFID Sensor Networks (RSN) are Energy Harvesting (EH) and Energy Transfer (ET). These techniques enable the dynamic energy level maintenance and optimisation as well as ensuring reliable communication which adheres to the goal of increased network performance and lifetime. In this paper, we present an overview of RSN, its types of integration and relative applications. We then provide the state-of-the-art EM techniques and strategies for RSN from August 2009 till date, thereby reviewing the existing EH and ET mechanisms designed for RSN. The taxonomy on various challenges for EM in RSN has also been articulated for open research directives
    • 

    corecore