3 research outputs found

    Modèle collaboratif pour l'Internet of Things (IoT)

    Get PDF
    L'Internet of Things (IoT) consiste principalement à connecter des objets physiques à l'Internet. Le Web of Things (WoT) est un IoT plus spécifique qui vise à apporter des technologies et des normes du Web à l'IoT, L'émergence de l'IoT et du WoT offre un grand potentiel pour le développement de nouveaux services et applications connectant le monde physique au monde virtuel, un processus qui n'était pas possible auparavant. De nos jours, il existe de nombreuses plateformes et applications pour l’IoT. Cependant, et au mieux de notre connaissance, ils se limitent généralement dans leur champ d'application à un simple schéma de stockage et de récupération des données. Dans une tentative de profiter de cette occasion, ce mémoire de maîtrise présente un modèle théorique qui offre un ensemble de primitives et une nouvelle stratégie de collaboration pour partager les données dans le monde de l’IoT. Basé sur une stratégie de décentralisation, ce modèle propose une approche de propagation des données qui se concrétise dans les trois phases suivantes : i) la découverte de services, ii) la sélection de services et iii) la consommation de services, et cela au-delà d’une simple politique de contrôle d’accès. Ce travail présente aussi un langage dédié appelé IoTCollab, qui est conçu pour faciliter la programmation et l'intégration des différents concepts introduits par le modèle de partage de données

    Conception d'un modèle architectural collaboratif pour l'informatique omniprésente à la périphérie des réseaux mobiles

    Get PDF
    Le progrès des technologies de communication pair-à-pair et sans fil a de plus en plus permis l’intégration de dispositifs portables et omniprésents dans des systèmes distribués et des architectures informatiques de calcul dans le paradigme de l’internet des objets. De même, ces dispositifs font l'objet d'un développement technologique continu. Ainsi, ils ont toujours tendance à se miniaturiser, génération après génération durant lesquelles ils sont considérés comme des dispositifs de facto. Le fruit de ces progrès est l'émergence de l'informatique mobile collaborative et omniprésente, notamment intégrée dans les modèles architecturaux de l'Internet des Objets. L’avantage le plus important de cette évolution de l'informatique est la facilité de connecter un grand nombre d'appareils omniprésents et portables lorsqu'ils sont en déplacement avec différents réseaux disponibles. Malgré les progrès continuels, les systèmes intelligents mobiles et omniprésents (réseaux, dispositifs, logiciels et technologies de connexion) souffrent encore de diverses limitations à plusieurs niveaux tels que le maintien de la connectivité, la puissance de calcul, la capacité de stockage de données, le débit de communications, la durée de vie des sources d’énergie, l'efficacité du traitement de grosses tâches en termes de partitionnement, d'ordonnancement et de répartition de charge. Le développement technologique accéléré des équipements et dispositifs de ces modèles mobiles s'accompagne toujours de leur utilisation intensive. Compte tenu de cette réalité, plus d'efforts sont nécessaires à la fois dans la conception structurelle tant au matériel et logiciel que dans la manière dont il est géré. Il s'agit d'améliorer, d'une part, l'architecture de ces modèles et leurs technologies de communication et, d'autre part, les algorithmes d'ordonnancement et d'équilibrage de charges pour effectuer leurs travaux efficacement sur leurs dispositifs. Notre objectif est de rendre ces modèles omniprésents plus autonomes, intelligents et collaboratifs pour renforcer les capacités de leurs dispositifs, leurs technologies de connectivité et les applications qui effectuent leurs tâches. Ainsi, nous avons établi un modèle architectural autonome, omniprésent et collaboratif pour la périphérie des réseaux. Ce modèle s'appuie sur diverses technologies de connexion modernes telles que le sans-fil, la radiocommunication pair-à-pair, et les technologies offertes par LoPy4 de Pycom telles que LoRa, BLE, Wi-Fi, Radio Wi-Fi et Bluetooth. L'intégration de ces technologies permet de maintenir la continuité de la communication dans les divers environnements, même les plus sévères. De plus, ce modèle conçoit et évalue un algorithme d'équilibrage de charge et d'ordonnancement permettant ainsi de renforcer et améliorer son efficacité et sa qualité de service (QoS) dans différents environnements. L’évaluation de ce modèle architectural montre des avantages tels que l’amélioration de la connectivité et l’efficacité d’exécution des tâches. Advances in peer-to-peer and wireless communication technologies have increasingly enabled the integration of mobile and pervasive devices into distributed systems and computing architectures in the Internet of Things paradigm. Likewise, these devices are subject to continuous technological development. Thus, they always tend to be miniaturized, generation after generation during which they are considered as de facto devices. The success of this progress is the emergence of collaborative mobiles and pervasive computing, particularly integrated into the architectural models of the Internet of Things. The most important benefit of this form of computing is the ease of connecting a large number of pervasive and portable devices when they are on the move with different networks available. Despite the continual advancements that support this field, mobile and pervasive intelligent systems (networks, devices, software and connection technologies) still suffer from various limitations at several levels such as maintaining connectivity, computing power, ability to data storage, communication speeds, the lifetime of power sources, the efficiency of processing large tasks in terms of partitioning, scheduling and load balancing. The accelerated technological development of the equipment and devices of these mobile models is always accompanied by their intensive use. Given this reality, it requires more efforts both in their structural design and management. This involves improving on the one hand, the architecture of these models and their communication technologies, and, on the other hand, the scheduling and load balancing algorithms for the work efficiency. The goal is to make these models more autonomous, intelligent, and collaborative by strengthening the different capabilities of their devices, their connectivity technologies and the applications that perform their tasks. Thus, we have established a collaborative autonomous and pervasive architectural model deployed at the periphery of networks. This model is based on various modern connection technologies such as wireless, peer-to-peer radio communication, and technologies offered by Pycom's LoPy4 such as LoRa, BLE, Wi-Fi, Radio Wi-Fi and Bluetooth. The integration of these technologies makes it possible to maintain the continuity of communication in the various environments, even the most severe ones. Within this model, we designed and evaluated a load balancing and scheduling algorithm to strengthen and improve its efficiency and quality of service (QoS) in different environments. The evaluation of this architectural model shows payoffs such as improvement of connectivity and efficiency of task executions

    13th International Conference on Modeling, Optimization and Simulation - MOSIM 2020

    Get PDF
    Comité d’organisation: Université Internationale d’Agadir – Agadir (Maroc) Laboratoire Conception Fabrication Commande – Metz (France)Session RS-1 “Simulation et Optimisation” / “Simulation and Optimization” Session RS-2 “Planification des Besoins Matières Pilotée par la Demande” / ”Demand-Driven Material Requirements Planning” Session RS-3 “Ingénierie de Systèmes Basées sur les Modèles” / “Model-Based System Engineering” Session RS-4 “Recherche Opérationnelle en Gestion de Production” / "Operations Research in Production Management" Session RS-5 "Planification des Matières et des Ressources / Planification de la Production” / “Material and Resource Planning / Production Planning" Session RS-6 “Maintenance Industrielle” / “Industrial Maintenance” Session RS-7 "Etudes de Cas Industriels” / “Industrial Case Studies" Session RS-8 "Données de Masse / Analyse de Données” / “Big Data / Data Analytics" Session RS-9 "Gestion des Systèmes de Transport” / “Transportation System Management" Session RS-10 "Economie Circulaire / Développement Durable" / "Circular Economie / Sustainable Development" Session RS-11 "Conception et Gestion des Chaînes Logistiques” / “Supply Chain Design and Management" Session SP-1 “Intelligence Artificielle & Analyse de Données pour la Production 4.0” / “Artificial Intelligence & Data Analytics in Manufacturing 4.0” Session SP-2 “Gestion des Risques en Logistique” / “Risk Management in Logistics” Session SP-3 “Gestion des Risques et Evaluation de Performance” / “Risk Management and Performance Assessment” Session SP-4 "Indicateurs Clés de Performance 4.0 et Dynamique de Prise de Décision” / ”4.0 Key Performance Indicators and Decision-Making Dynamics" Session SP-5 "Logistique Maritime” / “Marine Logistics" Session SP-6 “Territoire et Logistique : Un Système Complexe” / “Territory and Logistics: A Complex System” Session SP-7 "Nouvelles Avancées et Applications de la Logique Floue en Production Durable et en Logistique” / “Recent Advances and Fuzzy-Logic Applications in Sustainable Manufacturing and Logistics" Session SP-8 “Gestion des Soins de Santé” / ”Health Care Management” Session SP-9 “Ingénierie Organisationnelle et Gestion de la Continuité de Service des Systèmes de Santé dans l’Ere de la Transformation Numérique de la Société” / “Organizational Engineering and Management of Business Continuity of Healthcare Systems in the Era of Numerical Society Transformation” Session SP-10 “Planification et Commande de la Production pour l’Industrie 4.0” / “Production Planning and Control for Industry 4.0” Session SP-11 “Optimisation des Systèmes de Production dans le Contexte 4.0 Utilisant l’Amélioration Continue” / “Production System Optimization in 4.0 Context Using Continuous Improvement” Session SP-12 “Défis pour la Conception des Systèmes de Production Cyber-Physiques” / “Challenges for the Design of Cyber Physical Production Systems” Session SP-13 “Production Avisée et Développement Durable” / “Smart Manufacturing and Sustainable Development” Session SP-14 “L’Humain dans l’Usine du Futur” / “Human in the Factory of the Future” Session SP-15 “Ordonnancement et Prévision de Chaînes Logistiques Résilientes” / “Scheduling and Forecasting for Resilient Supply Chains
    corecore