477 research outputs found

    Medium Access Control in Energy Harvesting - Wireless Sensor Networks

    Get PDF

    Low-power downlink for the Internet of Things using IEEE 802.11-compliant wake-up receivers

    Get PDF
    National Research Foundation (NRF) Singapore under NRF Investigatorship gran

    Performance evaluation of wake-up radio based wireless body area network

    Get PDF
    Abstract. The last decade has been really ambitious in new research and development techniques to reduce energy consumption especially in wireless sensor networks (WSNs). Sensor nodes are usually battery-powered and thus have very limited lifetime. Energy efficiency has been the most important aspect to discuss when talking about wireless body area network (WBAN) in particular, since it is the bottleneck of these networks. Medium access control (MAC) protocols hold the vital position to determine the energy efficiency of a WBAN, which is a key design issue for battery operated sensor nodes. The wake-up radio (WUR) based MAC and physical layer (PHY) have been evaluated in this research work in order to contribute to the energy efficient solutions development. WUR is an on-demand approach in which the node is woken up by the wake-up signal (WUS). A WUS switches a node from sleep mode to wake up mode to start signal transmission and reception. The WUS is transmitted or received by a secondary radio transceiver, which operates on very low power. The energy benefit of using WUR is compared with conventional duty-cycling approach. As the protocol defines the nodes in WUR based network do not waste energy on idle listening and are only awakened when there is a request for communication, therefore, energy consumption is extremely low. The performance of WUR based MAC protocol has been evaluated for both physical layer (PHY) and MAC for transmission of WUS and data. The probabilities of miss detection, false alarm and detection error rates are calculated for PHY and the probabilities of collision and successful data transmission for channel access method Aloha is evaluated. The results are obtained to compute and compare the total energy consumption of WUR based network with duty cycling. The results prove that the WUR based networks have significant potential to improve energy efficiency, in comparison to conventional duty cycling approach especially, in the case of low data-reporting rate applications. The duty cycle approach is better than WUR approach when sufficiently low duty cycle is combined with highly frequent communication between the network nodes

    Optimization and verification of the TR-MAC protocol for wireless sensor networks

    Get PDF
    Energy-efficiency is an important requirement in the design of communication protocols for wireless sensor networks (WSN). TR-MAC is an energy-efficient medium access control (MAC) layer protocol for low power WSN that exploits transmitted-reference (TR) modulation in the physical layer. The underlying TR modulation in TR-MAC provides faster synchronization and signal acquisition without requiring channel estimation and complex rake receiver in the receiver side. TR modulation also enables multiple access for a pair of nodes using different frequency offsets. This paper introduces an explicit expression that allows the TR-MAC protocol to minimize its energy consumption, depending on the experienced traffic load. Furthermore, an implementation of the protocol in the OMNeT++ simulator with MiXiM simulation framework is introduced, and analytical results introduced in [13] are verified by simulation results obtained using the simulator

    Range Extension of Passive Wake-up Radio Systems through Energy Harvesting

    Get PDF
    Abstract—Use of a passive wake-up radio can drastically increase the network lifetime in a sensor network by reducing or even completely eliminating unnecessary idle listening. A sensor node with a wake-up radio receiver (WuRx) can operate in an extremely low power sleep mode until it receives a trigger signal sent by a wake-up radio transmitter (WuTx). After receiving the trigger signal, the attached WuRx wakes up the sensor node to start the data communication. In this paper, we implement and compare the performance of three passive wake-up radio-based sensor nodes: 1) WISP-Mote, which is a sensor mote that employs an Intel WISP passive RFID tag as the WuRx; 2) EH-WISP-Mote, which combines a novel energy harvester with the WISP-Mote; and 3) REACH-Mote, which uses the energy harvester circuit combined with an ultra-low-power pulse generator to trigger the wake-up of the mote. Experimental results show that the wake-up range and wake-up delay for the EH-WISP-Mote are improved compared with the WISP-Mote, while providing the ability to perform both broadcast-based and ID-based wake-ups. On the other hand, the REACH-Mote, which can only provide broadcast-based wake-up, can achieve a much longer wake-up range than any known passive wake-up radio to date, achieving feasible wake-up at a range of up to 37ft. I

    Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications

    Get PDF
    Wireless sensor networks (WSNs) have the capacity to revolutionize data gathering in both spaceflight and terrestrial applications. WSNs provide a huge advantage over traditional, wired instrumentation since they do not require wiring trunks to connect sensors to a central hub. This allows for easy sensor installation in hard to reach locations, easy expansion of the number of sensors or sensing modalities, and reduction in both system cost and weight. While this technology offers unprecedented flexibility and adaptability, implementing it in practice is not without its difficulties. Recent advances in standards-based WSN protocols for industrial control applications have come a long way to solving many of the challenges facing practical WSN deployments. In this paper, we will overview two of the more promising candidates - WirelessHART from the HART Communication Foundation and ISA100.11a from the International Society of Automation - and present the architecture for a new standards-based sensor node for networking and applications research

    Sub-GHz LPWAN network coexistence, management and virtualization : an overview and open research challenges

    Get PDF
    The IoT domain is characterized by many applications that require low-bandwidth communications over a long range, at a low cost and at low power. Low power wide area networks (LPWANs) fulfill these requirements by using sub-GHz radio frequencies (typically 433 or 868 MHz) with typical transmission ranges in the order of 1 up to 50 km. As a result, a single base station can cover large areas and can support high numbers of connected devices (> 1000 per base station). Notorious initiatives in this domain are LoRa, Sigfox and the upcoming IEEE 802.11ah (or "HaLow") standard. Although these new technologies have the potential to significantly impact many IoT deployments, the current market is very fragmented and many challenges exists related to deployment, scalability, management and coexistence aspects, making adoption of these technologies difficult for many companies. To remedy this, this paper proposes a conceptual framework to improve the performance of LPWAN networks through in-network optimization, cross-technology coexistence and cooperation and virtualization of management functions. In addition, the paper gives an overview of state of the art solutions and identifies open challenges for each of these aspects
    • …
    corecore