485 research outputs found

    Satisfiability of General Intruder Constraints with and without a Set Constructor

    Get PDF
    Many decision problems on security protocols can be reduced to solving so-called intruder constraints in Dolev Yao model. Most constraint solving procedures for protocol security rely on two properties of constraint systems called monotonicity and variable origination. In this work we relax these restrictions by giving a decision procedure for solving general intruder constraints (that do not have these properties) that stays in NP. Our result extends a first work by L. Mazar\'e in several directions: we allow non-atomic keys, and an associative, commutative and idempotent symbol (for modeling sets). We also discuss several new applications of the results.Comment: Submitted to the Special issue of Information and Computation on Security and Rewriting Techniques (SecReT), 2011. 59 page

    Compiling symbolic attacks to protocol implementation tests

    Full text link
    Recently efficient model-checking tools have been developed to find flaws in security protocols specifications. These flaws can be interpreted as potential attacks scenarios but the feasability of these scenarios need to be confirmed at the implementation level. However, bridging the gap between an abstract attack scenario derived from a specification and a penetration test on real implementations of a protocol is still an open issue. This work investigates an architecture for automatically generating abstract attacks and converting them to concrete tests on protocol implementations. In particular we aim to improve previously proposed blackbox testing methods in order to discover automatically new attacks and vulnerabilities. As a proof of concept we have experimented our proposed architecture to detect a renegotiation vulnerability on some implementations of SSL/TLS, a protocol widely used for securing electronic transactions.Comment: In Proceedings SCSS 2012, arXiv:1307.802

    Towards a Constrained-based Verification of Parameterized Cryptographic Protocols

    Get PDF
    International audienceAlthough many works have been dedicated to standard protocols like Needham-Schroeder very few address the more challenging class of group protocol s. We present a synchronous model for group protocols, that generalizes standard protocol models by permitting unbounded lists inside messages. In this extended model we propose a correct and complete set of inference rules for checking security properties in presence of an active intruder for the class of well-tagged protocols. Our inference system generalizes the ones that are implemented in several tools for a bounded number of sessions and fixed size lists in message. In particular when applied to protocols whose specification does not contain unbounded lists our inference system provides a decision procedure for secrecy in the case of a fixed number of sessions

    A Logic for Constraint-based Security Protocol Analysis

    Get PDF
    We propose PS-LTL, a pure-past security linear temporal logic that allows the specification of a variety of authentication, secrecy and data freshness properties. Furthermore, we present a sound and complete decision procedure to establish the validity of security properties for symbolic execution traces, and show the integration with constraint-based analysis techniques

    A Spatial-Epistemic Logic for Reasoning about Security Protocols

    Full text link
    Reasoning about security properties involves reasoning about where the information of a system is located, and how it evolves over time. While most security analysis techniques need to cope with some notions of information locality and knowledge propagation, usually they do not provide a general language for expressing arbitrary properties involving local knowledge and knowledge transfer. Building on this observation, we introduce a framework for security protocol analysis based on dynamic spatial logic specifications. Our computational model is a variant of existing pi-calculi, while specifications are expressed in a dynamic spatial logic extended with an epistemic operator. We present the syntax and semantics of the model and logic, and discuss the expressiveness of the approach, showing it complete for passive attackers. We also prove that generic Dolev-Yao attackers may be mechanically determined for any deterministic finite protocol, and discuss how this result may be used to reason about security properties of open systems. We also present a model-checking algorithm for our logic, which has been implemented as an extension to the SLMC system.Comment: In Proceedings SecCo 2010, arXiv:1102.516

    Formal Models and Techniques for Analyzing Security Protocols: A Tutorial

    Get PDF
    International audienceSecurity protocols are distributed programs that aim at securing communications by the means of cryptography. They are for instance used to secure electronic payments, home banking and more recently electronic elections. Given The financial and societal impact in case of failure, and the long history of design flaws in such protocol, formal verification is a necessity. A major difference from other safety critical systems is that the properties of security protocols must hold in the presence of an arbitrary adversary. The aim of this paper is to provide a tutorial to some modern approaches for formally modeling protocols, their goals and automatically verifying them

    Orchestration under Security Constraints

    Get PDF
    International audienceAutomatic composition of web services is a challenging task. Many works have considered simplified automata models that abstract away from the structure of messages exchanged by the services. For the domain of secured services (using e.g. digital signing or timestamping) we propose a novel approach to automated composition of services based on their security policies. Given a community of services and a goal service, we reduce the problem of composing the goal from services in the community to a security problem where an intruder should intercept and redirect messages from the service community and a client service till reaching a satisfying state. We have implemented the algorithm in AVANTSSAR Platform and applied the tool to several case studies

    Decision Procedures for the Security of Protocols with Probabilistic Encryption against Offline Dictionary Attacks

    Get PDF
    International audienceWe consider the problem of formal automatic verification of cryptographic protocols when some data, like poorly chosen passwords, can be guessed by dictionary attacks. First, we define a theory of these attacks and propose an inference system modeling the deduction capabilities of an intruder. This system extends a set of well-studied deduction rules for symmetric and public key encryption, often called Dolev–Yao rules, with the introduction of a probabilistic encryption operator and guessing abilities for the intruder. Then, we show that the intruder deduction problem in this extended model is decidable in PTIME. The proof is based on a locality lemma for our inference system. This first result yields to an NP decision procedure for the protocol insecurity problem in the presence of a passive intruder. In the active case, the same problem is proved to be NP-complete: we give a procedure for simultaneously solving symbolic constraints with variables that represent intruder deductions. We illustrate the procedure with examples of published protocols and compare our model to other recent formal definitions of dictionary attacks

    Relating two standard notions of secrecy

    Get PDF
    Two styles of definitions are usually considered to express that a security protocol preserves the confidentiality of a data s. Reachability-based secrecy means that s should never be disclosed while equivalence-based secrecy states that two executions of a protocol with distinct instances for s should be indistinguishable to an attacker. Although the second formulation ensures a higher level of security and is closer to cryptographic notions of secrecy, decidability results and automatic tools have mainly focused on the first definition so far. This paper initiates a systematic investigation of the situations where syntactic secrecy entails strong secrecy. We show that in the passive case, reachability-based secrecy actually implies equivalence-based secrecy for digital signatures, symmetric and asymmetric encryption provided that the primitives are probabilistic. For active adversaries, we provide sufficient (and rather tight) conditions on the protocol for this implication to hold.Comment: 29 pages, published in LMC
    • 

    corecore