3,444 research outputs found

    A Web-Based Collaborative Multimedia Presentation Document System

    Get PDF
    With the distributed and rapidly increasing volume of data and expeditious development of modern web browsers, web browsers have become a possible legitimate vehicle for remote interactive multimedia presentation and collaboration, especially for geographically dispersed teams. To our knowledge, although there are a large number of applications developed for these purposes, there are some drawbacks in prior work including the lack of interactive controls of presentation flows, general-purpose collaboration support on multimedia, and efficient and precise replay of presentations. To fill the research gaps in prior work, in this dissertation, we propose a web-based multimedia collaborative presentation document system, which models a presentation as media resources together with a stream of media events, attached to associated media objects. It represents presentation flows and collaboration actions in events, implements temporal and spatial scheduling on multimedia objects, and supports real-time interactive control of the predefined schedules. As all events are represented by simple messages with an object-prioritized approach, our platform can also support fine-grained precise replay of presentations. Hundreds of kilobytes could be enough to store the events in a collaborative presentation session for accurate replays, compared with hundreds of megabytes in screen recording tools with a pixel-based replay mechanism

    Using cooperation to improve the experience of web services consumers

    Get PDF
    Web Services (WS) are one of the most promising approaches for building loosely coupled systems. However, due to the heterogeneous and dynamic nature of the WS environment, ensuring good QoS is still non-trivial. While WS tend to scale better than tightly coupled systems, they introduce a larger communication overhead and are more susceptible to server/resource latency. Traditionally this problem has been addressed by relying on negotiated Service Level Agreement to ensure the required QoS, or the development of elaborate compensation handlers to minimize the impact of undesirable latency. This research focuses on the use of cooperation between consumers and providers as an effective means of optimizing resource utilization and consumer experiences. It introduces a novel cooperative approach to implement the cooperation between consumers and providers

    Information Sharing Solutions for Nato Headquarters

    Get PDF
    NATO is an Alliance of 26 nations that operates on a consensus basis, not a majority basis. Thorough and timely information exchange between nations is fundamental to the Business Process. Current technology and practices at NATO HQ are inadequate to meet modern-day requirements despite the availability of demonstrated and accredited Cross-Domain technology solutions. This lack of integration between networks is getting more complicated with time, as nations continue to invest in IT and ignore the requirements for inter-networked gateways. This contributes to inefficiencies, fostering an atmosphere where shortcuts are taken in order to get the job done. The author recommends that NATO HQ should improve its presence on the Internet, building on the desired tenets of availability and security

    A component-based collaboration infrastructure

    Get PDF
    Groupware applications allow geographically distributed users to collaborate on shared tasks. However, it is widely recognized that groupware applications are expensive to build due to coordination services and group dynamics, neither of which is present in single-user applications. Previous collaboration transparency systems reuse existing single-user applications as a whole for collaborative work, often at the price of inflexible coordination. Previous collaboration awareness systems, on the other hand, provide reusable coordination services and multi-user widgets, but often with two weaknesses: (1) the multi-user widgets provided are special-purpose and limited in number, while no guidelines are provided for developing multi-user interface components in general; and (2) they often fail to reach the desired level of flexibility in coordination by tightly binding shared data and coordination services. In this dissertation, we propose a component-based approach to developing group- ware applications that addresses the above two problems. To address the first prob- lem, we propose a shared component model for modeling data and graphic user inter- face(GUI) components of groupware applications. As a result, the myriad of existing single-user components can be re-purposed as shared GUI or data components. An adaptation tool is developed to assist the adaptation process. To address the second problem, we propose a coordination service framework which systematically model the interaction between user, data, and coordination protocols. Due to the clean separation of data and control and the capability to dynamically "glue" them together, the framework provides reusable services such as data distribution, persistence, and adaptable consistency control. The association between data and coordination services can be dynamically changed at runtime. An Evolvable and eXtensible Environment for Collaboration (EXEC) is built to evaluate the proposed approach. In our experiments, we demonstrate two benefits of our approach: (1) a group of common groupware features adapted from existing single- user components are plugged in to extend the functionalities of the environment itself; and (2)coordination services can be dynamically attached to and detached from these shared components at different granules to support evolving collaboration needs

    SPEIR: Scottish Portals for Education, Information and Research. Final Project Report: Elements and Future Development Requirements of a Common Information Environment for Scotland

    Get PDF
    The SPEIR (Scottish Portals for Education, Information and Research) project was funded by the Scottish Library and Information Council (SLIC). It ran from February 2003 to September 2004, slightly longer than the 18 months originally scheduled and was managed by the Centre for Digital Library Research (CDLR). With SLIC's agreement, community stakeholders were represented in the project by the Confederation of Scottish Mini-Cooperatives (CoSMiC), an organisation whose members include SLIC, the National Library of Scotland (NLS), the Scottish Further Education Unit (SFEU), the Scottish Confederation of University and Research Libraries (SCURL), regional cooperatives such as the Ayrshire Libraries Forum (ALF)1, and representatives from the Museums and Archives communities in Scotland. Aims; A Common Information Environment For Scotland The aims of the project were to: o Conduct basic research into the distributed information infrastructure requirements of the Scottish Cultural Portal pilot and the public library CAIRNS integration proposal; o Develop associated pilot facilities by enhancing existing facilities or developing new ones; o Ensure that both infrastructure proposals and pilot facilities were sufficiently generic to be utilised in support of other portals developed by the Scottish information community; o Ensure the interoperability of infrastructural elements beyond Scotland through adherence to established or developing national and international standards. Since the Scottish information landscape is taken by CoSMiC members to encompass relevant activities in Archives, Libraries, Museums, and related domains, the project was, in essence, concerned with identifying, researching, and developing the elements of an internationally interoperable common information environment for Scotland, and of determining the best path for future progress

    DIVE on the internet

    Get PDF
    This dissertation reports research and development of a platform for Collaborative Virtual Environments (CVEs). It has particularly focused on two major challenges: supporting the rapid development of scalable applications and easing their deployment on the Internet. This work employs a research method based on prototyping and refinement and promotes the use of this method for application development. A number of the solutions herein are in line with other CVE systems. One of the strengths of this work consists in a global approach to the issues raised by CVEs and the recognition that such complex problems are best tackled using a multi-disciplinary approach that understands both user and system requirements. CVE application deployment is aided by an overlay network that is able to complement any IP multicast infrastructure in place. Apart from complementing a weakly deployed worldwide multicast, this infrastructure provides for a certain degree of introspection, remote controlling and visualisation. As such, it forms an important aid in assessing the scalability of running applications. This scalability is further facilitated by specialised object distribution algorithms and an open framework for the implementation of novel partitioning techniques. CVE application development is eased by a scripting language, which enables rapid development and favours experimentation. This scripting language interfaces many aspects of the system and enables the prototyping of distribution-related components as well as user interfaces. It is the key construct of a distributed environment to which components, written in different languages, connect and onto which they operate in a network abstracted manner. The solutions proposed are exemplified and strengthened by three collaborative applications. The Dive room system is a virtual environment modelled after the room metaphor and supporting asynchronous and synchronous cooperative work. WebPath is a companion application to a Web browser that seeks to make the current history of page visits more visible and usable. Finally, the London travel demonstrator supports travellers by providing an environment where they can explore the city, utilise group collaboration facilities, rehearse particular journeys and access tourist information data

    Distributed multimedia systems

    Get PDF
    A distributed multimedia system (DMS) is an integrated communication, computing, and information system that enables the processing, management, delivery, and presentation of synchronized multimedia information with quality-of-service guarantees. Multimedia information may include discrete media data, such as text, data, and images, and continuous media data, such as video and audio. Such a system enhances human communications by exploiting both visual and aural senses and provides the ultimate flexibility in work and entertainment, allowing one to collaborate with remote participants, view movies on demand, access on-line digital libraries from the desktop, and so forth. In this paper, we present a technical survey of a DMS. We give an overview of distributed multimedia systems, examine the fundamental concept of digital media, identify the applications, and survey the important enabling technologies.published_or_final_versio

    COSPO/CENDI Industry Day Conference

    Get PDF
    The conference's objective was to provide a forum where government information managers and industry information technology experts could have an open exchange and discuss their respective needs and compare them to the available, or soon to be available, solutions. Technical summaries and points of contact are provided for the following sessions: secure products, protocols, and encryption; information providers; electronic document management and publishing; information indexing, discovery, and retrieval (IIDR); automated language translators; IIDR - natural language capabilities; IIDR - advanced technologies; IIDR - distributed heterogeneous and large database support; and communications - speed, bandwidth, and wireless
    • 

    corecore