1,562 research outputs found

    The Impact of IPv6 on Penetration Testing

    Get PDF
    In this paper we discuss the impact the use of IPv6 has on remote penetration testing of servers and web applications. Several modifications to the penetration testing process are proposed to accommodate IPv6. Among these modifications are ways of performing fragmentation attacks, host discovery and brute-force protection. We also propose new checks for IPv6-specific vulnerabilities, such as bypassing firewalls using extension headers and reaching internal hosts through available transition mechanisms. The changes to the penetration testing process proposed in this paper can be used by security companies to make their penetration testing process applicable to IPv6 targets

    On the Feasibility of Fine-Grained TLS Security Configurations in Web Browsers Based on the Requested Domain Name

    Get PDF
    Most modern web browsers today sacrifice optimal TLS security for backward compatibility. They apply coarse-grained TLS configurations that support (by default) legacy versions of the protocol that have known design weaknesses, and weak ciphersuites that provide fewer security guarantees (e.g. non Forward Secrecy), and silently fall back to them if the server selects to. This introduces various risks including downgrade attacks such as the POODLE attack [15] that exploits the browsers silent fallback mechanism to downgrade the protocol version in order to exploit the legacy version flaws. To achieve a better balance between security and backward compatibility, we propose a mechanism for fine-grained TLS configurations in web browsers based on the sensitivity of the domain name in the HTTPS request using a whitelisting technique. That is, the browser enforces optimal TLS configurations for connections going to sensitive domains while enforcing default configurations for the rest of the connections. We demonstrate the feasibility of our proposal by implementing a proof-of-concept as a Firefox browser extension. We envision this mechanism as a built-in security feature in web browsers, e.g. a button similar to the \quotes{Bookmark} button in Firefox browsers and as a standardised HTTP header, to augment browsers security

    Large-scale DNS and DNSSEC data sets for network security research

    Get PDF
    The Domain Name System protocol is often abused to perform denial-of-service attacks. These attacks, called DNS amplification, rely on two properties of the DNS. Firstly, DNS is vulnerable to source address spoofing because it relies on the asynchronous connectionless UDP protocol. Secondly, DNS queries are usually small whereas DNS responses may be much larger than the query. In recent years, the DNS has been extended to include security features based on public key cryptography. This extension, called DNSSEC, adds integrity and authenticity to the DNS and solves a serious vulnerability in the original protocol. A downside of DNSSEC is that it may further increase the potential DNS has for amplification attacks. This disadvantage is often cited by opponents of DNSSEC as a major reason not to deploy the protocol. Until recently, however, ground truth about how serious an issue this can be was never established. This technical report describes the data sets obtained during a study we carried out to establish this ground truth. We make these data sets available as open data under a permissive Creative Commons license. We believe these data sets have a lot of value beyond our research. They, for example, allow characterisations of EDNS0 implementations, provide information on IPv6 deployment (presence or absence of AAAA records) for a large number of domains in separate TLDs, etc
    • ā€¦
    corecore