5,279 research outputs found

    Structural Prediction of Protein–Protein Interactions by Docking: Application to Biomedical Problems

    Get PDF
    A huge amount of genetic information is available thanks to the recent advances in sequencing technologies and the larger computational capabilities, but the interpretation of such genetic data at phenotypic level remains elusive. One of the reasons is that proteins are not acting alone, but are specifically interacting with other proteins and biomolecules, forming intricate interaction networks that are essential for the majority of cell processes and pathological conditions. Thus, characterizing such interaction networks is an important step in understanding how information flows from gene to phenotype. Indeed, structural characterization of protein–protein interactions at atomic resolution has many applications in biomedicine, from diagnosis and vaccine design, to drug discovery. However, despite the advances of experimental structural determination, the number of interactions for which there is available structural data is still very small. In this context, a complementary approach is computational modeling of protein interactions by docking, which is usually composed of two major phases: (i) sampling of the possible binding modes between the interacting molecules and (ii) scoring for the identification of the correct orientations. In addition, prediction of interface and hot-spot residues is very useful in order to guide and interpret mutagenesis experiments, as well as to understand functional and mechanistic aspects of the interaction. Computational docking is already being applied to specific biomedical problems within the context of personalized medicine, for instance, helping to interpret pathological mutations involved in protein–protein interactions, or providing modeled structural data for drug discovery targeting protein–protein interactions.Spanish Ministry of Economy grant number BIO2016-79960-R; D.B.B. is supported by a predoctoral fellowship from CONACyT; M.R. is supported by an FPI fellowship from the Severo Ochoa program. We are grateful to the Joint BSC-CRG-IRB Programme in Computational Biology.Peer ReviewedPostprint (author's final draft

    Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods

    Get PDF
    Background: Alanine scanning mutagenesis is a powerful experimental methodology for investigating the structural and energetic characteristics of protein complexes. Individual aminoacids are systematically mutated to alanine and changes in free energy of binding (Delta Delta G) measured. Several experiments have shown that protein-protein interactions are critically dependent on just a few residues ("hot spots") at the interface. Hot spots make a dominant contribution to the free energy of binding and if mutated they can disrupt the interaction. As mutagenesis studies require significant experimental efforts, there is a need for accurate and reliable computational methods. Such methods would also add to our understanding of the determinants of affinity and specificity in protein-protein recognition.Results: We present a novel computational strategy to identify hot spot residues, given the structure of a complex. We consider the basic energetic terms that contribute to hot spot interactions, i.e. van der Waals potentials, solvation energy, hydrogen bonds and Coulomb electrostatics. We treat them as input features and use machine learning algorithms such as Support Vector Machines and Gaussian Processes to optimally combine and integrate them, based on a set of training examples of alanine mutations. We show that our approach is effective in predicting hot spots and it compares favourably to other available methods. In particular we find the best performances using Transductive Support Vector Machines, a semi-supervised learning scheme. When hot spots are defined as those residues for which Delta Delta G >= 2 kcal/mol, our method achieves a precision and a recall respectively of 56% and 65%.Conclusion: We have developed an hybrid scheme in which energy terms are used as input features of machine learning models. This strategy combines the strengths of machine learning and energy-based methods. Although so far these two types of approaches have mainly been applied separately to biomolecular problems, the results of our investigation indicate that there are substantial benefits to be gained by their integration

    dbMPIKT: A database of kinetic and thermodynamic mutant protein interactions

    Full text link
    © 2018 The Author(s). Background: Protein-protein interactions (PPIs) play important roles in biological functions. Studies of the effects of mutants on protein interactions can provide further understanding of PPIs. Currently, many databases collect experimental mutants to assess protein interactions, but most of these databases are old and have not been updated for several years. Results: To address this issue, we manually curated a kinetic and thermodynamic database of mutant protein interactions (dbMPIKT) that is freely accessible at our website. This database contains 5291 mutants in protein interactions collected from previous databases and the literature published within the last three years. Furthermore, some data analysis, such as mutation number, mutation type, protein pair source and network map construction, can be performed online. Conclusion: Our work can promote the study on PPIs, and novel information can be mined from the new database. Our database is available in http://DeepLearner.ahu.edu.cn/web/dbMPIKT/for use by all, including both academics and non-academics

    Analysis of Genomic and Proteomic Signals Using Signal Processing and Soft Computing Techniques

    Get PDF
    Bioinformatics is a data rich field which provides unique opportunities to use computational techniques to understand and organize information associated with biomolecules such as DNA, RNA, and Proteins. It involves in-depth study in the areas of genomics and proteomics and requires techniques from computer science,statistics and engineering to identify, model, extract features and to process data for analysis and interpretation of results in a biologically meaningful manner.In engineering methods the signal processing techniques such as transformation,filtering, pattern analysis and soft-computing techniques like multi layer perceptron(MLP) and radial basis function neural network (RBFNN) play vital role to effectively resolve many challenging issues associated with genomics and proteomics. In this dissertation, a sincere attempt has been made to investigate on some challenging problems of bioinformatics by employing some efficient signal and soft computing methods. Some of the specific issues, which have been attempted are protein coding region identification in DNA sequence, hot spot identification in protein, prediction of protein structural class and classification of microarray gene expression data. The dissertation presents some novel methods to measure and to extract features from the genomic sequences using time-frequency analysis and machine intelligence techniques.The problems investigated and the contribution made in the thesis are presented here in a concise manner. The S-transform, a powerful time-frequency representation technique, possesses superior property over the wavelet transform and short time Fourier transform as the exponential function is fixed with respect to time axis while the localizing scalable Gaussian window dilates and translates. The S-transform uses an analysis window whose width is decreasing with frequency providing a frequency dependent resolution. The invertible property of S-transform makes it suitable for time-band filtering application. Gene prediction and protein coding region identification have been always a challenging task in computational biology,especially in eukaryote genomes due to its complex structure. This issue is resolved using a S-transform based time-band filtering approach by localizing the period-3 property present in the DNA sequence which forms the basis for the identification.Similarly, hot spot identification in protein is a burning issue in protein science due to its importance in binding and interaction between proteins. A novel S-transform based time-frequency filtering approach is proposed for efficient identification of the hot spots. Prediction of structural class of protein has been a challenging problem in bioinformatics.A novel feature representation scheme is proposed to efficiently represent the protein, thereby improves the prediction accuracy. The high dimension and low sample size of microarray data lead to curse of dimensionality problem which affects the classification performance.In this dissertation an efficient hybrid feature extraction method is proposed to overcome the dimensionality issue and a RBFNN is introduced to efficiently classify the microarray samples

    Prediction of protein-protein interaction sites using an ensemble method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prediction of protein-protein interaction sites is one of the most challenging and intriguing problems in the field of computational biology. Although much progress has been achieved by using various machine learning methods and a variety of available features, the problem is still far from being solved.</p> <p>Results</p> <p>In this paper, an ensemble method is proposed, which combines bootstrap resampling technique, SVM-based fusion classifiers and weighted voting strategy, to overcome the imbalanced problem and effectively utilize a wide variety of features. We evaluate the ensemble classifier using a dataset extracted from 99 polypeptide chains with 10-fold cross validation, and get a AUC score of 0.86, with a sensitivity of 0.76 and a specificity of 0.78, which are better than that of the existing methods. To improve the usefulness of the proposed method, two special ensemble classifiers are designed to handle the cases of missing homologues and structural information respectively, and the performance is still encouraging. The robustness of the ensemble method is also evaluated by effectively classifying interaction sites from surface residues as well as from all residues in proteins. Moreover, we demonstrate the applicability of the proposed method to identify interaction sites from the non-structural proteins (NS) of the influenza A virus, which may be utilized as potential drug target sites.</p> <p>Conclusion</p> <p>Our experimental results show that the ensemble classifiers are quite effective in predicting protein interaction sites. The Sub-EnClassifiers with resampling technique can alleviate the imbalanced problem and the combination of Sub-EnClassifiers with a wide variety of feature groups can significantly improve prediction performance.</p

    Efficient comprehensive scoring of docked proteincomplexes - a machine learning approach

    Get PDF
    Biological systems and processes rely on a complex network of molecular interactions. The association of biological macromolecules is a fundamental biochemical phenomenon and an unsolved theoretical problem crucial for the understanding of complex living systems. The term protein-protein docking describes the computational prediction of the assembly of protein complexes from the individual subunits. Docking algorithms generally produce a large number of putative protein complexes. In most cases, some of these conformations resemble the native complex structure within an acceptable degree of structural similarity. A major challenge in the field of docking is to extract the near-native structure(s) out of this considerably large pool of solutions, the so called scoring or ranking problem. It has been the aim of this work to develop methods for the efficient and accurate detection of near-native conformations in the scoring or ranking process of docked protein-protein complexes. A series of structural, chemical, biological and physical properties are used in this work to score docked protein-protein complexes. These properties include specialised energy functions, evolutionary relationship, class specific residue interface propensities, gap volume, buried surface area, empiric pair potentials on residue and atom level as well as measures for the tightness of fit. Efficient comprehensive scoring functions have been developed using probabilistic Support Vector Machines in combination with this array of properties on the largest currently available protein-protein docking benchmark. The established scoring functions are shown to be specific for certain types of protein-protein complexes and are able to detect near-native complex conformations from large sets of decoys with high sensitivity. The specific complex classes are Enzyme-Inhibitor/Substrate complexes, Antibody-Antigen complexes and a third class denoted as "Other" complexes which holds all test cases not belonging to either of the two previous classes. The three complex class specific scoring functions were tested on the docking results of 99 complexes in their unbound form for the above mentioned categories. Defining success as scoring a 'true' result with a p-value of better than 0.1, the scoring schemes were found to be successful in 93%, 78% and 63% of the examined cases, respectively. The ranking of near-native structures can be drastically improved, leading to a significant enrichment of near-native complex conformations in the top ranks. It could be shown that the developed scoring schemes outperform five other previously published scoring functions

    Computational methodologies applied to Protein-Protein Interactions for molecular insights in Medicinal Chemistry

    Get PDF
    In living systems, proteins usually team up into \u201cmolecular machinery\u201d implementing several protein-to-protein physical contacts \u2013 or protein-protein interactions (PPIs) \u2013 to exert biological effects at both cellular and systems levels. Deregulations of protein-protein contacts have been associated with a huge number of diseases in a wide range of medical areas, such as oncology, cancer immunotherapy, infectious diseases, neurological disorders, heart failure, inflammation and oxidative stress. PPIs are very complex and usually characterised by specific shape, size and complementarity. The protein interfaces are generally large, broad and shallow, and frequently protein-protein contacts are established between non-continuous epitopes, that conversely are dislocated across the protein interfaces. For this reason, in the past two decades, PPIs were thought to be \u201cundruggable\u201d targets by the scientific research community with scarce or no chance of success. However, in recent years the Medicinal Chemistry frontiers have been changing and PPIs have gained popularity amongst the research groups due to their key roles in such a huge number of diseases. Until recently, PPIs were determined by experimental evidence through techniques specifically developed to target a small group of interactions. However, these methods present several limitations in terms of high costs and labour- and time-wasting. Nowadays, a large number of computational methods have been successfully applied to evaluate, validate, and deeply analyse the experimentally determined protein interactomes. In this context, a high number of computational tools and techniques have been developed, such as methods designed to construct interaction databases, quantum mechanics and molecular mechanics (QM/MM) to study the electronic properties, simulate chemical reactions, and calculate spectra, and all-atom molecular dynamics simulations to simulate temporal and spatial scales of inter- and intramolecular interactions. These techniques have allowed to explore PPI networks and predict the related functional features. In this PhD work, an extensive use of computational techniques has been reported as valuable tool to explore protein-protein interfaces, identify their hot spot residues, select small molecules and design peptides with the aim of inhibiting six different studied PPIs. Indeed, in this thesis, a success story of in silico approaches to PPI study has been described, where MD simulations, docking and pharmacophore screenings led to the identification of a set of PPI modulators. Among these, two molecules, RIM430 and RIM442, registered good inhibitory activity with IC50 values even within the nanomolar range against the interaction between MUC1 and CIN85 proteins in cancer disease. Furthermore, computational alanine scanning, all-atom molecular dynamics simulations, docking and pharmacophore screening were exploited to (1) rationally predict three potential interaction models of NLRP3PYD-ASCPYD complex involved in inflammatory and autoimmune diseases; (2) identify a potentially druggable region on the surface of SARS-CoV-2 Spike protein interface and select putative inhibitors of the interaction between Spike protein and the host ACE2 receptor against COVID-19 (CoronaVIrus Disease 2019); (3) investigate intramolecular modifications as a consequence of a point mutation on C3b protein (R102G) associated with the age-related macular degeneration (AMD) disease; (4) design non-standard peptides to inhibit transcriptional events associated with HOX-PBX complex involved in cancer diseases; and (5) to optimise a patented peptide sequence by designing helix-shaped peptides embedded with the hydrogen bond surrogate approach to tackle cocaine abuse relapses associated with Ras-RasGRF1 interaction. Although all the herein exploited techniques are based on predictive calculations and need experimental evidence to confirm the findings, the results and molecular insights retrieved and collected show the potential of the computer-aided drug design applied to the Medicinal Chemistry, guaranteeing labour- and time-saving to the research groups. On the other hand, computing ability, improved algorithms and fast-growing data sets are rapidly fostering advances in multiscale molecular modelling, providing a powerful emerging paradigm for drug discovery. It means that more and more research efforts will be done to invest in novel and more precise computational techniques and fine-tune the currently employed methodologies
    corecore