4,836 research outputs found

    Domain discovery method for topological profile searches in protein structures

    Get PDF
    We describe a method for automated domain discovery for topological profile searches in protein structures. The method is used in a system TOPStructure for fast prediction of CATH classification for protein structures (given as PDB files). It is important for profile searches in multi-domain proteins, for which the profile method by itself tends to perform poorly. We also present an O(C(n)k +nk2) time algorithm for this problem, compared to the O(C(n)k +(nk)2) time used by a trivial algorithm (where n is the length of the structure, k is the number of profiles and C(n) is the time needed to check for a presence of a given motif in a structure of length n). This method has been developed and is currently used for TOPS representations of protein structures and prediction of CATH classification, but may be applied to other graph-based representations of protein or RNA structures and/or other prediction problems. A protein structure prediction system incorporating the domain discovery method is available at http://bioinf.mii.lu.lv/tops/

    An optimized TOPS+ comparison method for enhanced TOPS models

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Background Although methods based on highly abstract descriptions of protein structures, such as VAST and TOPS, can perform very fast protein structure comparison, the results can lack a high degree of biological significance. Previously we have discussed the basic mechanisms of our novel method for structure comparison based on our TOPS+ model (Topological descriptions of Protein Structures Enhanced with Ligand Information). In this paper we show how these results can be significantly improved using parameter optimization, and we call the resulting optimised TOPS+ method as advanced TOPS+ comparison method i.e. advTOPS+. Results We have developed a TOPS+ string model as an improvement to the TOPS [1-3] graph model by considering loops as secondary structure elements (SSEs) in addition to helices and strands, representing ligands as first class objects, and describing interactions between SSEs, and SSEs and ligands, by incoming and outgoing arcs, annotating SSEs with the interaction direction and type. Benchmarking results of an all-against-all pairwise comparison using a large dataset of 2,620 non-redundant structures from the PDB40 dataset [4] demonstrate the biological significance, in terms of SCOP classification at the superfamily level, of our TOPS+ comparison method. Conclusions Our advanced TOPS+ comparison shows better performance on the PDB40 dataset [4] compared to our basic TOPS+ method, giving 90 percent accuracy for SCOP alpha+beta; a 6 percent increase in accuracy compared to the TOPS and basic TOPS+ methods. It also outperforms the TOPS, basic TOPS+ and SSAP comparison methods on the Chew-Kedem dataset [5], achieving 98 percent accuracy. Software Availability: The TOPS+ comparison server is available at http://balabio.dcs.gla.ac.uk/mallika/WebTOPS/.This article is available through the Brunel Open Access Publishing Fun

    Analysis of Three-Dimensional Protein Images

    Full text link
    A fundamental goal of research in molecular biology is to understand protein structure. Protein crystallography is currently the most successful method for determining the three-dimensional (3D) conformation of a protein, yet it remains labor intensive and relies on an expert's ability to derive and evaluate a protein scene model. In this paper, the problem of protein structure determination is formulated as an exercise in scene analysis. A computational methodology is presented in which a 3D image of a protein is segmented into a graph of critical points. Bayesian and certainty factor approaches are described and used to analyze critical point graphs and identify meaningful substructures, such as alpha-helices and beta-sheets. Results of applying the methodologies to protein images at low and medium resolution are reported. The research is related to approaches to representation, segmentation and classification in vision, as well as to top-down approaches to protein structure prediction.Comment: See http://www.jair.org/ for any accompanying file

    Reconstruction of an in silico metabolic model of _Arabidopsis thaliana_ through database integration

    Get PDF
    The number of genome-scale metabolic models has been rising quickly in recent years, and the scope of their utilization encompasses a broad range of applications from metabolic engineering to biological discovery. However the reconstruction of such models remains an arduous process requiring a high level of human intervention. Their utilization is further hampered by the absence of standardized data and annotation formats and the lack of recognized quality and validation standards.

Plants provide a particularly rich range of perspectives for applications of metabolic modeling. We here report the first effort to the reconstruction of a genome-scale model of the metabolic network of the plant _Arabidopsis thaliana_, including over 2300 reactions and compounds. Our reconstruction was performed using a semi-automatic methodology based on the integration of two public genome-wide databases, significantly accelerating the process. Database entries were compared and integrated with each other, allowing us to resolve discrepancies and enhance the quality of the reconstruction. This process lead to the construction of three models based on different quality and validation standards, providing users with the possibility to choose the standard that is most appropriate for a given application. First, a _core metabolic model_ containing only consistent data provides a high quality model that was shown to be stoichiometrically consistent. Second, an _intermediate metabolic model_ attempts to fill gaps and provides better continuity. Third, a _complete metabolic model_ contains the full set of known metabolic reactions and compounds in _Arabidopsis thaliana_.

We provide an annotated SBML file of our core model to enable the maximum level of compatibility with existing tools and databases. We eventually discuss a series of principles to raise awareness of the need to develop coordinated efforts and common standards for the reconstruction of genome-scale metabolic models, with the aim of enabling their widespread diffusion, frequent update, maximum compatibility and convenience of use by the wider research community and industry

    Ligand-based virtual screening using binary kernel discrimination

    Get PDF
    This paper discusses the use of a machine-learning technique called binary kernel discrimination (BKD) for virtual screening in drug- and pesticide-discovery programmes. BKD is compared with several other ligand-based tools for virtual screening in databases of 2D structures represented by fragment bit-strings, and is shown to provide an effective, and reasonably efficient, way of prioritising compounds for biological screening

    Quantifying biogenic bias in screening libraries.

    Get PDF
    In lead discovery, libraries of 10(6) molecules are screened for biological activity. Given the over 10(60) drug-like molecules thought possible, such screens might never succeed. The fact that they do, even occasionally, implies a biased selection of library molecules. We have developed a method to quantify the bias in screening libraries toward biogenic molecules. With this approach, we consider what is missing from screening libraries and how they can be optimized

    Spherical harmonics coeffcients for ligand-based virtual screening of cyclooxygenase inhibitors

    Get PDF
    Background: Molecular descriptors are essential for many applications in computational chemistry, such as ligand-based similarity searching. Spherical harmonics have previously been suggested as comprehensive descriptors of molecular structure and properties. We investigate a spherical harmonics descriptor for shape-based virtual screening. Methodology/Principal Findings: We introduce and validate a partially rotation-invariant three-dimensional molecular shape descriptor based on the norm of spherical harmonics expansion coefficients. Using this molecular representation, we parameterize molecular surfaces, i.e., isosurfaces of spatial molecular property distributions. We validate the shape descriptor in a comprehensive retrospective virtual screening experiment. In a prospective study, we virtually screen a large compound library for cyclooxygenase inhibitors, using a self-organizing map as a pre-filter and the shape descriptor for candidate prioritization. Conclusions/Significance: 12 compounds were tested in vitro for direct enzyme inhibition and in a whole blood assay. Active compounds containing a triazole scaffold were identified as direct cyclooxygenase-1 inhibitors. This outcome corroborates the usefulness of spherical harmonics for representation of molecular shape in virtual screening of large compound collections. The combination of pharmacophore and shape-based filtering of screening candidates proved to be a straightforward approach to finding novel bioactive chemotypes with minimal experimental effort
    corecore