1,265 research outputs found

    Structural alphabets derived from attractors in conformational space

    Get PDF
    Background: The hierarchical and partially redundant nature of protein structures justifies the definition of frequently occurring conformations of short fragments as 'states'. Collections of selected representatives for these states define Structural Alphabets, describing the most typical local conformations within protein structures. These alphabets form a bridge between the string-oriented methods of sequence analysis and the coordinate-oriented methods of protein structure analysis.Results: A Structural Alphabet has been derived by clustering all four-residue fragments of a high-resolution subset of the protein data bank and extracting the high-density states as representative conformational states. Each fragment is uniquely defined by a set of three independent angles corresponding to its degrees of freedom, capturing in simple and intuitive terms the properties of the conformational space. The fragments of the Structural Alphabet are equivalent to the conformational attractors and therefore yield a most informative encoding of proteins. Proteins can be reconstructed within the experimental uncertainty in structure determination and ensembles of structures can be encoded with accuracy and robustness.Conclusions: The density-based Structural Alphabet provides a novel tool to describe local conformations and it is specifically suitable for application in studies of protein dynamics. © 2010 Pandini et al; licensee BioMed Central Ltd

    : Protein Long Local Structure Prediction

    Get PDF
    International audienceA relevant and accurate description of three-dimensional (3D) protein structures can be achieved by characterizing recurrent local structures. In a previous study, we developed a library of 120 3D structural prototypes encompassing all known 11-residues long local protein structures and ensuring a good quality of structural approximation. A local structure prediction method was also proposed. Here, overlapping properties of local protein structures in global ones are taken into account to characterize frequent local networks. At the same time, we propose a new long local structure prediction strategy which involves the use of evolutionary information coupled with Support Vector Machines (SVMs). Our prediction is evaluated by a stringent geometrical assessment. Every local structure prediction with a Calpha RMSD less than 2.5 A from the true local structure is considered as correct. A global prediction rate of 63.1% is then reached, corresponding to an improvement of 7.7 points compared with the previous strategy. In the same way, the prediction of 88.33% of the 120 structural classes is improved with 8.65% mean gain. 85.33% of proteins have better prediction results with a 9.43% average gain. An analysis of prediction rate per local network also supports the global improvement and gives insights into the potential of our method for predicting super local structures. Moreover, a confidence index for the direct estimation of prediction quality is proposed. Finally, our method is proved to be very competitive with cutting-edge strategies encompassing three categories of local structure predictions. Proteins 2009. (c) 2009 Wiley-Liss, Inc

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF
    corecore