3,541 research outputs found

    Partitioning Relational Matrices of Similarities or Dissimilarities using the Value of Information

    Full text link
    In this paper, we provide an approach to clustering relational matrices whose entries correspond to either similarities or dissimilarities between objects. Our approach is based on the value of information, a parameterized, information-theoretic criterion that measures the change in costs associated with changes in information. Optimizing the value of information yields a deterministic annealing style of clustering with many benefits. For instance, investigators avoid needing to a priori specify the number of clusters, as the partitions naturally undergo phase changes, during the annealing process, whereby the number of clusters changes in a data-driven fashion. The global-best partition can also often be identified.Comment: Submitted to the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP

    A Short Survey on Data Clustering Algorithms

    Full text link
    With rapidly increasing data, clustering algorithms are important tools for data analytics in modern research. They have been successfully applied to a wide range of domains; for instance, bioinformatics, speech recognition, and financial analysis. Formally speaking, given a set of data instances, a clustering algorithm is expected to divide the set of data instances into the subsets which maximize the intra-subset similarity and inter-subset dissimilarity, where a similarity measure is defined beforehand. In this work, the state-of-the-arts clustering algorithms are reviewed from design concept to methodology; Different clustering paradigms are discussed. Advanced clustering algorithms are also discussed. After that, the existing clustering evaluation metrics are reviewed. A summary with future insights is provided at the end

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed

    A survey of statistical network models

    Full text link
    Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.Comment: 96 pages, 14 figures, 333 reference

    Application based technical Approaches of data mining in Pharmaceuticals, and Research approaches in biomedical and Bioinformatics

    Get PDF
    In the past study shows that flow of direction in the field of pharmaceutical was quit slow and simplest and by the time the process of transformation of information was so complex and the it was out of the reach to the technology, new modern technology could not reach to catch the pharmaceutical field. Then the later on technology becomes the compulsorily part of business and its contributed into business progress and developments. But now a days its get technology enabled and smoothly and easily pharma industries managing their billings and inventories and developing new products and services and now its easy to maintain and merging the drugs detail like its cost ,and usage with the patients records prescribe by the doctors in the hospitals .and data collection methods have improved data manipulation techniques are yet to keep pace with them data mining called and refer with the specific term as pattern analysis on large data sets used like clustering, segmentation and classification for helping better manipulation of the data and hence it helps to the pharma firms and industries this paper describes the vital role of data Mining in the pharma industry and thus data mining improves the quality of decision making services in pharmaceutical fields. This paper also describe a brief overviews of tool kits of Data mining and its various Applications in the field of Biomedical research in terms of relational approaches of data minings with the Emphasis on propositionalisation and relational subgroup discovery, and which is quit helpful to prove to be effective for data analysis in biomedical and its applications and in Bioinformatics as well. DOI: 10.17762/ijritcc2321-8169.15038
    • …
    corecore