124 research outputs found

    Classification of protein interaction sentences via gaussian processes

    Get PDF
    The increase in the availability of protein interaction studies in textual format coupled with the demand for easier access to the key results has lead to a need for text mining solutions. In the text processing pipeline, classification is a key step for extraction of small sections of relevant text. Consequently, for the task of locating protein-protein interaction sentences, we examine the use of a classifier which has rarely been applied to text, the Gaussian processes (GPs). GPs are a non-parametric probabilistic analogue to the more popular support vector machines (SVMs). We find that GPs outperform the SVM and na\"ive Bayes classifiers on binary sentence data, whilst showing equivalent performance on abstract and multiclass sentence corpora. In addition, the lack of the margin parameter, which requires costly tuning, along with the principled multiclass extensions enabled by the probabilistic framework make GPs an appealing alternative worth of further adoption

    Various criteria in the evaluation of biomedical named entity recognition

    Get PDF
    BACKGROUND: Text mining in the biomedical domain is receiving increasing attention. A key component of this process is named entity recognition (NER). Generally speaking, two annotated corpora, GENIA and GENETAG, are most frequently used for training and testing biomedical named entity recognition (Bio-NER) systems. JNLPBA and BioCreAtIvE are two major Bio-NER tasks using these corpora. Both tasks take different approaches to corpus annotation and use different matching criteria to evaluate system performance. This paper details these differences and describes alternative criteria. We then examine the impact of different criteria and annotation schemes on system performance by retesting systems participated in the above two tasks. RESULTS: To analyze the difference between JNLPBA's and BioCreAtIvE's evaluation, we conduct Experiment 1 to evaluate the top four JNLPBA systems using BioCreAtIvE's classification scheme. We then compare them with the top four BioCreAtIvE systems. Among them, three systems participated in both tasks, and each has an F-score lower on JNLPBA than on BioCreAtIvE. In Experiment 2, we apply hypothesis testing and correlation coefficient to find alternatives to BioCreAtIvE's evaluation scheme. It shows that right-match and left-match criteria have no significant difference with BioCreAtIvE. In Experiment 3, we propose a customized relaxed-match criterion that uses right match and merges JNLPBA's five NE classes into two, which achieves an F-score of 81.5%. In Experiment 4, we evaluate a range of five matching criteria from loose to strict on the top JNLPBA system and examine the percentage of false negatives. Our experiment gives the relative change in precision, recall and F-score as matching criteria are relaxed. CONCLUSION: In many applications, biomedical NEs could have several acceptable tags, which might just differ in their left or right boundaries. However, most corpora annotate only one of them. In our experiment, we found that right match and left match can be appropriate alternatives to JNLPBA and BioCreAtIvE's matching criteria. In addition, our relaxed-match criterion demonstrates that users can define their own relaxed criteria that correspond more realistically to their application requirements

    Semantic models as metrics for kernel-based interaction identification

    Get PDF
    Automatic detection of protein-protein interactions (PPIs) in biomedical publications is vital for efficient biological research. It also presents a host of new challenges for pattern recognition methodologies, some of which will be addressed by the research in this thesis. Proteins are the principal method of communication within a cell; hence, this area of research is strongly motivated by the needs of biologists investigating sub-cellular functions of organisms, diseases, and treatments. These researchers rely on the collaborative efforts of the entire field and communicate through experimental results published in reviewed biomedical journals. The substantial number of interactions detected by automated large-scale PPI experiments, combined with the ease of access to the digitised publications, has increased the number of results made available each day. The ultimate aim of this research is to provide tools and mechanisms to aid biologists and database curators in locating relevant information. As part of this objective this thesis proposes, studies, and develops new methodologies that go some way to meeting this grand challenge. Pattern recognition methodologies are one approach that can be used to locate PPI sentences; however, most accurate pattern recognition methods require a set of labelled examples to train on. For this particular task, the collection and labelling of training data is highly expensive. On the other hand, the digital publications provide a plentiful source of unlabelled data. The unlabelled data is used, along with word cooccurrence models, to improve classification using Gaussian processes, a probabilistic alternative to the state-of-the-art support vector machines. This thesis presents and systematically assesses the novel methods of using the knowledge implicitly encoded in biomedical texts and shows an improvement on the current approaches to PPI sentence detection

    Exploring the boundaries: gene and protein identification in biomedical text

    Get PDF
    Background: Good automatic information extraction tools offer hope for automatic processing of the exploding biomedical literature, and successful named entity recognition is a key component for such tools. Methods: We present a maximum-entropy based system incorporating a diverse set of features for identifying gene and protein names in biomedical abstracts. Results: This system was entered in the BioCreative comparative evaluation and achieved a precision of 0.83 and recall of 0.84 in the “open ” evaluation and a precision of 0.78 and recall of 0.85 in the “closed ” evaluation. Conclusions: Central contributions are rich use of features derived from the training data at multiple levels of granularity, a focus on correctly identifying entity boundaries, and the innovative use of several external knowledge sources including full MEDLINE abstracts and web searches. Background The explosion of information in the biomedical domain and particularly in genetics has highlighted the need for automated text information extraction techniques. MEDLINE, the primary research database serving the biomedical community, currently contains over 14 million abstracts, with 60,000 new abstracts appearing each month. There is also an impressive number of molecular biological databases covering a

    Protein interaction sentence detection using multiple semantic kernels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Detection of sentences that describe protein-protein interactions (PPIs) in biomedical publications is a challenging and unresolved pattern recognition problem. Many state-of-the-art approaches for this task employ kernel classification methods, in particular support vector machines (SVMs). In this work we propose a novel data integration approach that utilises semantic kernels and a kernel classification method that is a probabilistic analogue to SVMs. Semantic kernels are created from statistical information gathered from large amounts of unlabelled text using lexical semantic models. Several semantic kernels are then fused into an overall composite classification space. In this initial study, we use simple features in order to examine whether the use of combinations of kernels constructed using word-based semantic models can improve PPI sentence detection.</p> <p>Results</p> <p>We show that combinations of semantic kernels lead to statistically significant improvements in recognition rates and receiver operating characteristic (ROC) scores over the plain Gaussian kernel, when applied to a well-known labelled collection of abstracts. The proposed kernel composition method also allows us to automatically infer the most discriminative kernels.</p> <p>Conclusions</p> <p>The results from this paper indicate that using semantic information from unlabelled text, and combinations of such information, can be valuable for classification of short texts such as PPI sentences. This study, however, is only a first step in evaluation of semantic kernels and probabilistic multiple kernel learning in the context of PPI detection. The method described herein is modular, and can be applied with a variety of feature types, kernels, and semantic models, in order to facilitate full extraction of interacting proteins.</p

    An analysis of gene/protein associations at PubMed scale

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Event extraction following the GENIA Event corpus and BioNLP shared task models has been a considerable focus of recent work in biomedical information extraction. This work includes efforts applying event extraction methods to the entire PubMed literature database, far beyond the narrow subdomains of biomedicine for which annotated resources for extraction method development are available.</p> <p>Results</p> <p>In the present study, our aim is to estimate the coverage of all statements of gene/protein associations in PubMed that existing resources for event extraction can provide. We base our analysis on a recently released corpus automatically annotated for gene/protein entities and syntactic analyses covering the entire PubMed, and use named entity co-occurrence, shortest dependency paths and an unlexicalized classifier to identify likely statements of gene/protein associations. A set of high-frequency/high-likelihood association statements are then manually analyzed with reference to the GENIA ontology.</p> <p>Conclusions</p> <p>We present a first estimate of the overall coverage of gene/protein associations provided by existing resources for event extraction. Our results suggest that for event-type associations this coverage may be over 90%. We also identify several biologically significant associations of genes and proteins that are not addressed by these resources, suggesting directions for further extension of extraction coverage.</p
    corecore