103 research outputs found

    Integration of breast cancer gene signatures based on graph centrality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Various gene-expression signatures for breast cancer are available for the prediction of clinical outcome. However due to small overlap between different signatures, it is challenging to integrate existing disjoint signatures to provide a unified insight on the association between gene expression and clinical outcome.</p> <p>Results</p> <p>In this paper, we propose a method to integrate different breast cancer gene signatures by using graph centrality in a context-constrained protein interaction network (PIN). The context-constrained PIN for breast cancer is built by integrating complete PIN and various gene signatures reported in literatures. Then, we use graph centralities to quantify the importance of genes to breast cancer. Finally, we get reliable gene signatures that are consisted by the genes with high graph centrality. The genes which are well-known breast cancer genes, such as TP53 and BRCA1, are ranked extremely high in our results. Compared with previous results by functional enrichment analysis, graph centralities, especially the eigenvector centrality and subgraph centrality, based gene signatures are more tightly related to breast cancer. We validate these signatures on genome-wide microarray dataset and found strong association between the expression of these signature genes and pathologic parameters.</p> <p>Conclusions</p> <p>In summary, graph centralities provide a novel way to connect different cancer signatures and to understand the mechanism of relationship between gene expression and clinical outcome of breast cancer. Moreover, this method is not only can be used on breast cancer, but also can be used on other gene expression related diseases and drug studies.</p

    Advantages of genomic complexity: bioinformatics opportunities in microRNA cancer signatures

    Get PDF
    MicroRNAs, small non-coding RNAs, may act as tumor suppressors or oncogenes, and each regulate their own transcription and that of hundreds of genes, often in a tissue-dependent manner. This creates a tightly interwoven network regulating and underlying oncogenesis and cancer biology. Although protein-coding gene signatures and single protein pathway markers have proliferated over the past decade, routine adoption of the former has been hampered by interpretability, reproducibility, and dimensionality, whereas the single molecule–phenotype reductionism of the latter is often overly simplistic to account for complex phenotypes. MicroRNA-derived biomarkers offer a powerful alternative; they have both the flexibility of gene expression signature classifiers and the desirable mechanistic transparency of single protein biomarkers. Furthermore, several advances have recently demonstrated the robust detection of microRNAs from various biofluids, thus providing an additional opportunity for obtaining bioinformatically derived biomarkers to accelerate the identification of individual patients for personalized therapy

    Single Sample Expression-Anchored Mechanisms Predict Survival in Head and Neck Cancer

    Get PDF
    Gene expression signatures that are predictive of therapeutic response or prognosis are increasingly useful in clinical care; however, mechanistic (and intuitive) interpretation of expression arrays remains an unmet challenge. Additionally, there is surprisingly little gene overlap among distinct clinically validated expression signatures. These “causality challenges” hinder the adoption of signatures as compared to functionally well-characterized single gene biomarkers. To increase the utility of multi-gene signatures in survival studies, we developed a novel approach to generate “personal mechanism signatures” of molecular pathways and functions from gene expression arrays. FAIME, the Functional Analysis of Individual Microarray Expression, computes mechanism scores using rank-weighted gene expression of an individual sample. By comparing head and neck squamous cell carcinoma (HNSCC) samples with non-tumor control tissues, the precision and recall of deregulated FAIME-derived mechanisms of pathways and molecular functions are comparable to those produced by conventional cohort-wide methods (e.g. GSEA). The overlap of “Oncogenic FAIME Features of HNSCC” (statistically significant and differentially regulated FAIME-derived genesets representing GO functions or KEGG pathways derived from HNSCC tissue) among three distinct HNSCC datasets (pathways:46%, p<0.001) is more significant than the gene overlap (genes:4%). These Oncogenic FAIME Features of HNSCC can accurately discriminate tumors from control tissues in two additional HNSCC datasets (n = 35 and 91, F-accuracy = 100% and 97%, empirical p<0.001, area under the receiver operating characteristic curves = 99% and 92%), and stratify recurrence-free survival in patients from two independent studies (p = 0.0018 and p = 0.032, log-rank). Previous approaches depending on group assignment of individual samples before selecting features or learning a classifier are limited by design to discrete-class prediction. In contrast, FAIME calculates mechanism profiles for individual patients without requiring group assignment in validation sets. FAIME is more amenable for clinical deployment since it translates the gene-level measurements of each given sample into pathways and molecular function profiles that can be applied to analyze continuous phenotypes in clinical outcome studies (e.g. survival time, tumor volume)

    Predictive integration of gene functional similarity and co-expression defines treatment response of endothelial progenitor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endothelial progenitor cells (EPCs) have been implicated in different processes crucial to vasculature repair, which may offer the basis for new therapeutic strategies in cardiovascular disease. Despite advances facilitated by functional genomics, there is a lack of systems-level understanding of treatment response mechanisms of EPCs. In this research we aimed to characterize the EPCs response to adenosine (Ado), a cardioprotective factor, based on the systems-level integration of gene expression data and prior functional knowledge. Specifically, we set out to identify novel biosignatures of Ado-treatment response in EPCs.</p> <p>Results</p> <p>The predictive integration of gene expression data and standardized functional similarity information enabled us to identify new treatment response biosignatures. Gene expression data originated from Ado-treated and -untreated EPCs samples, and functional similarity was estimated with Gene Ontology (GO)-based similarity information. These information sources enabled us to implement and evaluate an integrated prediction approach based on the concept of <it>k</it>-nearest neighbours learning (<it>k</it>NN). The method can be executed by expert- and data-driven input queries to guide the search for biologically meaningful biosignatures. The resulting <it>integrated kNN </it>system identified new candidate EPC biosignatures that can offer high classification performance (areas under the operating characteristic curve > 0.8). We also showed that the proposed models can outperform those discovered by standard gene expression analysis. Furthermore, we report an initial independent <it>in vitro </it>experimental follow-up, which provides additional evidence of the potential validity of the top biosignature.</p> <p>Conclusion</p> <p>Response to Ado treatment in EPCs can be accurately characterized with a new method based on the combination of gene co-expression data and GO-based similarity information. It also exploits the incorporation of human expert-driven queries as a strategy to guide the automated search for candidate biosignatures. The proposed biosignature improves the systems-level characterization of EPCs. The new integrative predictive modeling approach can also be applied to other phenotype characterization or biomarker discovery problems.</p

    Genetic Interactions between Chromosomes 11 and 18 Contribute to Airway Hyperresponsiveness in Mice

    Get PDF
    We used two-dimensional quantitative trait locus analysis to identify interacting genetic loci that contribute to the native airway constrictor hyperresponsiveness to methacholine that characterizes A/J mice, relative to C57BL/6J mice. We quantified airway responsiveness to intravenous methacholine boluses in eighty-eight (C57BL/6J X A/J) F2 and twenty-seven (A/J X C57BL/6J) F2 mice as well as ten A/J mice and six C57BL/6J mice; all studies were performed in male mice. Mice were genotyped at 384 SNP markers, and from these data two-QTL analyses disclosed one pair of interacting loci on chromosomes 11 and 18; the homozygous A/J genotype at each locus constituted the genetic interaction linked to the hyperresponsive A/J phenotype. Bioinformatic network analysis of potential interactions among proteins encoded by genes in the linked regions disclosed two high priority subnetworks - Myl7, Rock1, Limk2; and Npc1, Npc1l1. Evidence in the literature supports the possibility that either or both networks could contribute to the regulation of airway constrictor responsiveness. Together, these results should stimulate evaluation of the genetic contribution of these networks in the regulation of airway responsiveness in humans

    HNF4A and GATA6 Loss Reveals Therapeutically Actionable Subtypes in Pancreatic Cancer.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) can be divided into transcriptomic subtypes with two broad lineages referred to as classical (pancreatic) and squamous. We find that these two subtypes are driven by distinct metabolic phenotypes. Loss of genes that drive endodermal lineage specification, HNF4A and GATA6, switch metabolic profiles from classical (pancreatic) to predominantly squamous, with glycogen synthase kinase 3 beta (GSK3β) a key regulator of glycolysis. Pharmacological inhibition of GSK3β results in selective sensitivity in the squamous subtype; however, a subset of these squamous patient-derived cell lines (PDCLs) acquires rapid drug tolerance. Using chromatin accessibility maps, we demonstrate that the squamous subtype can be further classified using chromatin accessibility to predict responsiveness and tolerance to GSK3β inhibitors. Our findings demonstrate that distinct patterns of chromatin accessibility can be used to identify patient subgroups that are indistinguishable by gene expression profiles, highlighting the utility of chromatin-based biomarkers for patient selection in the treatment of PDAC
    corecore