902 research outputs found

    Protein complex prediction via verifying and reconstructing the topology of domain-domain interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput methods for detecting protein-protein interactions enable us to obtain large interaction networks, and also allow us to computationally identify the associations of proteins as protein complexes. Although there are methods to extract protein complexes as sets of proteins from interaction networks, the extracted complexes may include false positives because they do not account for the structural limitations of the proteins and thus do not check that the proteins in the extracted complex can simultaneously bind to each other. In addition, there have been few searches for deeper insights into the protein complexes, such as of the topology of the protein-protein interactions or into the domain-domain interactions that mediate the protein interactions.</p> <p>Results</p> <p>Here, we introduce a combinatorial approach for prediction of protein complexes focusing not only on determining member proteins in complexes but also on the DDI/PPI organization of the complexes. Our method analyzes complex candidates predicted by the existing methods. It searches for optimal combinations of domain-domain interactions in the candidates based on an assumption that the proteins in a candidate can form a true protein complex if each of the domains is used by a single protein interaction. This optimization problem was mathematically formulated and solved using binary integer linear programming. By using publicly available sets of yeast protein-protein interactions and domain-domain interactions, we succeeded in extracting protein complex candidates with an accuracy that is twice the average accuracy of the existing methods, MCL, MCODE, or clustering coefficient. Although the configuring parameters for each algorithm resulted in slightly improved precisions, our method always showed better precision for most values of the parameters.</p> <p>Conclusions</p> <p>Our combinatorial approach can provide better accuracy for prediction of protein complexes and also enables to identify both direct PPIs and DDIs that mediate them in complexes.</p

    Methods for protein complex prediction and their contributions towards understanding the organization, function and dynamics of complexes

    Get PDF
    Complexes of physically interacting proteins constitute fundamental functional units responsible for driving biological processes within cells. A faithful reconstruction of the entire set of complexes is therefore essential to understand the functional organization of cells. In this review, we discuss the key contributions of computational methods developed till date (approximately between 2003 and 2015) for identifying complexes from the network of interacting proteins (PPI network). We evaluate in depth the performance of these methods on PPI datasets from yeast, and highlight challenges faced by these methods, in particular detection of sparse and small or sub- complexes and discerning of overlapping complexes. We describe methods for integrating diverse information including expression profiles and 3D structures of proteins with PPI networks to understand the dynamics of complex formation, for instance, of time-based assembly of complex subunits and formation of fuzzy complexes from intrinsically disordered proteins. Finally, we discuss methods for identifying dysfunctional complexes in human diseases, an application that is proving invaluable to understand disease mechanisms and to discover novel therapeutic targets. We hope this review aptly commemorates a decade of research on computational prediction of complexes and constitutes a valuable reference for further advancements in this exciting area.Comment: 1 Tabl

    Domain-adaptive Message Passing Graph Neural Network

    Full text link
    Cross-network node classification (CNNC), which aims to classify nodes in a label-deficient target network by transferring the knowledge from a source network with abundant labels, draws increasing attention recently. To address CNNC, we propose a domain-adaptive message passing graph neural network (DM-GNN), which integrates graph neural network (GNN) with conditional adversarial domain adaptation. DM-GNN is capable of learning informative representations for node classification that are also transferrable across networks. Firstly, a GNN encoder is constructed by dual feature extractors to separate ego-embedding learning from neighbor-embedding learning so as to jointly capture commonality and discrimination between connected nodes. Secondly, a label propagation node classifier is proposed to refine each node's label prediction by combining its own prediction and its neighbors' prediction. In addition, a label-aware propagation scheme is devised for the labeled source network to promote intra-class propagation while avoiding inter-class propagation, thus yielding label-discriminative source embeddings. Thirdly, conditional adversarial domain adaptation is performed to take the neighborhood-refined class-label information into account during adversarial domain adaptation, so that the class-conditional distributions across networks can be better matched. Comparisons with eleven state-of-the-art methods demonstrate the effectiveness of the proposed DM-GNN

    Automated modelling of multimeric protein complexes from heterogeneous structures

    Get PDF
    Protein interaction networks provide an increasingly complex picture of the relationships between macromolecules in the cell. Complementing these interactions with structural data provides critical insights into interaction mechanisms. However, structural information is available only for a tiny fraction of protein interactions and complexes currently known. To address this gap, we have developed a method to predict macromolecular complex structures by systematic combination of pairwise interactions of known structure. We first identify all interactions within a network that are of known structure or sufficiently similar to known structure to permit homology modelling. We then use these structural constraints to construct models of complexes. We tackle combinatorial explosion by developing an efficient algorithm that exploits heuristics to reduce the large search space and complement this with an automated scoring system to filter out the exponentially large number of unrealistic complexes, leaving a ranked set of the most plausible models. To test the approach, we defined a benchmark set of complexes of known structure, and show that many complexes can be re-created with good accuracy, using templates below 75% sequence identity. Certain models are much larger and more complete than what is capable with traditional modelling techniques. The approach can identify the most plausible homology models for a complex of dozens of proteins in less than a few hours. We applied the approach to whole-proteome sets of complexes from S. cerevisiae. For the complexes of known structure, we are able to identify the native complex in the majority of cases. We provide promising models for several dozen additional complexes, including multiple isoforms for each. Modelled complexes also provide functional classification, particularly for unannotated complexes from structural genomics initiatives. We show that the best results are achieved when the stoichiometry of the components is known and when the modelling is approached hierarchically, where core components, representing high-confidence interactions, are modelled before non-obligate interactions. We are refining this aspect of the automated modelling and making the procedure publicly available via a web service, to aid in the analysis of models. As the rate of structurally resolved interactions grows, our ability to model larger and more diverse complexes will grow exponentially

    The Evolution of Function in the Rab family of Small GTPases

    Get PDF
    Dissertation presented to obtain the PhD degree in Computational Biology.The question how protein function evolves is a fundamental problem with profound implications for both functional end evolutionary studies on proteins. Here, we review some of the work that has addressed or contributed to this question. We identify and comment on three different levels relevant for the evolution of protein function. First, biochemistry. This is the focus of our discussion, as protein function itself commonly receives least attention in studies on protein evolution.(...

    Template Based Modeling and Structural Refinement of Protein-Protein Interactions.

    Full text link
    Determining protein structures from sequence is a fundamental problem in molecular biology, as protein structure is essential to understanding protein function. In this study, I developed one of the first fully automated pipelines for template based quaternary structure prediction starting from sequence. Two critical steps for template based modeling are identifying the correct homologous structures by threading which generates sequence to structure alignments and refining the initial threading template coordinates closer to the native conformation. I developed SPRING (single-chain-based prediction of interactions and geometries), a monomer threading to dimer template mapping program, which was compared to the dimer co-threading program, COTH, using 1838 non homologous target complex structures. SPRING’s similarity score outperformed COTH in the first place ranking of templates, correctly identifying 798 and 527 interfaces respectively. More importantly the results were found to be complementary and the programs could be combined in a consensus based threading program showing a 5.1% improvement compared to SPRING. Template based modeling requires a structural analog being present in the PDB. A full search of the PDB, using threading and structural alignment, revealed that only 48.7% of the PDB has a suitable template whereas only 39.4% of the PDB has templates that can be identified by threading. In order to circumvent this, I included intramolecular domain-domain interfaces into the PDB library to boost template recognition of protein dimers; the merging of the two classes of interfaces improved recognition of heterodimers by 40% using benchmark settings. Next the template based assembly of protein complexes pipeline, TACOS, was created. The pipeline combines threading templates and domain knowledge from the PDB into a knowledge based energy score. The energy score is integrated into a Monte Carlo sampling simulation that drives the initial template closer to the native topology. The full pipeline was benchmarked using 350 non homologous structures and compared to two state of the art programs for dimeric structure prediction: ZDOCK and MODELLER. On average, TACOS models global and interface structure have a better quality than the models generated by MODELLER and ZDOCK.PHDBioinformaticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135847/1/bgovi_1.pd
    • …
    corecore