3,312 research outputs found

    Optimización de algoritmos bioinspirados en sistemas heterogéneos CPU-GPU.

    Get PDF
    Los retos científicos del siglo XXI precisan del tratamiento y análisis de una ingente cantidad de información en la conocida como la era del Big Data. Los futuros avances en distintos sectores de la sociedad como la medicina, la ingeniería o la producción eficiente de energía, por mencionar sólo unos ejemplos, están supeditados al crecimiento continuo en la potencia computacional de los computadores modernos. Sin embargo, la estela de este crecimiento computacional, guiado tradicionalmente por la conocida “Ley de Moore”, se ha visto comprometido en las últimas décadas debido, principalmente, a las limitaciones físicas del silicio. Los arquitectos de computadores han desarrollado numerosas contribuciones multicore, manycore, heterogeneidad, dark silicon, etc, para tratar de paliar esta ralentización computacional, dejando en segundo plano otros factores fundamentales en la resolución de problemas como la programabilidad, la fiabilidad, la precisión, etc. El desarrollo de software, sin embargo, ha seguido un camino totalmente opuesto, donde la facilidad de programación a través de modelos de abstracción, la depuración automática de código para evitar efectos no deseados y la puesta en producción son claves para una viabilidad económica y eficiencia del sector empresarial digital. Esta vía compromete, en muchas ocasiones, el rendimiento de las propias aplicaciones; consecuencia totalmente inadmisible en el contexto científico. En esta tesis doctoral tiene como hipótesis de partida reducir las distancias entre los campos hardware y software para contribuir a solucionar los retos científicos del siglo XXI. El desarrollo de hardware está marcado por la consolidación de los procesadores orientados al paralelismo masivo de datos, principalmente GPUs Graphic Processing Unit y procesadores vectoriales, que se combinan entre sí para construir procesadores o computadores heterogéneos HSA. En concreto, nos centramos en la utilización de GPUs para acelerar aplicaciones científicas. Las GPUs se han situado como una de las plataformas con mayor proyección para la implementación de algoritmos que simulan problemas científicos complejos. Desde su nacimiento, la trayectoria y la historia de las tarjetas gráficas ha estado marcada por el mundo de los videojuegos, alcanzando altísimas cotas de popularidad según se conseguía más realismo en este área. Un hito importante ocurrió en 2006, cuando NVIDIA (empresa líder en la fabricación de tarjetas gráficas) lograba hacerse con un hueco en el mundo de la computación de altas prestaciones y en el mundo de la investigación con el desarrollo de CUDA “Compute Unified Device Arquitecture. Esta arquitectura posibilita el uso de la GPU para el desarrollo de aplicaciones científicas de manera versátil. A pesar de la importancia de la GPU, es interesante la mejora que se puede producir mediante su utilización conjunta con la CPU, lo que nos lleva a introducir los sistemas heterogéneos tal y como detalla el título de este trabajo. Es en entornos heterogéneos CPU-GPU donde estos rendimientos alcanzan sus cotas máximas, ya que no sólo las GPUs soportan el cómputo científico de los investigadores, sino que es en un sistema heterogéneo combinando diferentes tipos de procesadores donde podemos alcanzar mayor rendimiento. En este entorno no se pretende competir entre procesadores, sino al contrario, cada arquitectura se especializa en aquella parte donde puede explotar mejor sus capacidades. Donde mayor rendimiento se alcanza es en estos clústeres heterogéneos, donde múltiples nodos son interconectados entre sí, pudiendo dichos nodos diferenciarse no sólo entre arquitecturas CPU-GPU, sino también en las capacidades computacionales dentro de estas arquitecturas. Con este tipo de escenarios en mente, se presentan nuevos retos en los que lograr que el software que hemos elegido como candidato se ejecuten de la manera más eficiente y obteniendo los mejores resultados posibles. Estas nuevas plataformas hacen necesario un rediseño del software para aprovechar al máximo los recursos computacionales disponibles. Se debe por tanto rediseñar y optimizar los algoritmos existentes para conseguir que las aportaciones en este campo sean relevantes, y encontrar algoritmos que, por su propia naturaleza sean candidatos para que su ejecución en dichas plataformas de alto rendimiento sea óptima. Encontramos en este punto una familia de algoritmos denominados bioinspirados, que utilizan la inteligencia colectiva como núcleo para la resolución de problemas. Precisamente esta inteligencia colectiva es la que les hace candidatos perfectos para su implementación en estas plataformas bajo el nuevo paradigma de computación paralela, puesto que las soluciones pueden ser construidas en base a individuos que mediante alguna forma de comunicación son capaces de construir conjuntamente una solución común. Esta tesis se centrará especialmente en uno de estos algoritmos bioinspirados que se engloba dentro del término metaheurísticas bajo el paradigma del Soft Computing, el Ant Colony Optimization “ACO”. Se realizará una contextualización, estudio y análisis del algoritmo. Se detectarán las partes más críticas y serán rediseñadas buscando su optimización y paralelización, manteniendo o mejorando la calidad de sus soluciones. Posteriormente se pasará a implementar y testear las posibles alternativas sobre diversas plataformas de alto rendimiento. Se utilizará el conocimiento adquirido en el estudio teórico-práctico anterior para su aplicación a casos reales, más en concreto se mostrará su aplicación sobre el plegado de proteínas. Todo este análisis es trasladado a su aplicación a un caso concreto. En este trabajo, aunamos las nuevas plataformas hardware de alto rendimiento junto al rediseño e implementación software de un algoritmo bioinspirado aplicado a un problema científico de gran complejidad como es el caso del plegado de proteínas. Es necesario cuando se implementa una solución a un problema real, realizar un estudio previo que permita la comprensión del problema en profundidad, ya que se encontrará nueva terminología y problemática para cualquier neófito en la materia, en este caso, se hablará de aminoácidos, moléculas o modelos de simulación que son desconocidos para los individuos que no sean de un perfil biomédico.Ingeniería, Industria y Construcció

    On the role of metaheuristic optimization in bioinformatics

    Get PDF
    Metaheuristic algorithms are employed to solve complex and large-scale optimization problems in many different fields, from transportation and smart cities to finance. This paper discusses how metaheuristic algorithms are being applied to solve different optimization problems in the area of bioinformatics. While the text provides references to many optimization problems in the area, it focuses on those that have attracted more interest from the optimization community. Among the problems analyzed, the paper discusses in more detail the molecular docking problem, the protein structure prediction, phylogenetic inference, and different string problems. In addition, references to other relevant optimization problems are also given, including those related to medical imaging or gene selection for classification. From the previous analysis, the paper generates insights on research opportunities for the Operations Research and Computer Science communities in the field of bioinformatics

    A Novel Intragenic Duplication in the HDAC8 Gene Underlying a Case of Cornelia de Lange Syndrome

    Get PDF
    Cornelia de Lange syndrome (CdLS) is a multisystemic genetic disorder characterized by distinctive facial features, growth retardation, and intellectual disability, as well as various systemic conditions. It is caused by genetic variants in genes related to the cohesin complex. Single-nucleotide variations are the best-known genetic cause of CdLS; however, copy number variants (CNVs) clearly underlie a substantial proportion of cases of the syndrome. The NIPBL gene was thought to be the locus within which clinically relevant CNVs contributed to CdLS. However, in the last few years, pathogenic CNVs have been identified in other genes such as HDAC8, RAD21, and SMC1A. Here, we studied an affected girl presenting with a classic CdLS phenotype heterozygous for a de novo ~32 kbp intragenic duplication affecting exon 10 of HDAC8. Molecular analyses revealed an alteration in the physiological splicing that included a 96 bp insertion between exons 9 and 10 of the main transcript of HDAC8. The aberrant transcript was predicted to generate a truncated protein whose accessibility to the active center was restricted, showing reduced ease of substrate entry into the mutated enzyme. Lastly, we conclude that the duplication is responsible for the patient’s phenotype, highlighting the contribution of CNVs as a molecular cause underlying CdLS

    A Novel Intragenic Duplication in the HDAC8 Gene Underlying a Case of Cornelia de Lange Syndrome

    Get PDF
    Cornelia de Lange syndrome; Genetic disorder; Intragenic duplicationSíndrome de Cornelia de Lange; Trastorno genético; Duplicación intragénicaSíndrome de Cornelia de Lange; Trastorn genètic; Duplicació intragènicaCornelia de Lange syndrome (CdLS) is a multisystemic genetic disorder characterized by distinctive facial features, growth retardation, and intellectual disability, as well as various systemic conditions. It is caused by genetic variants in genes related to the cohesin complex. Single-nucleotide variations are the best-known genetic cause of CdLS; however, copy number variants (CNVs) clearly underlie a substantial proportion of cases of the syndrome. The NIPBL gene was thought to be the locus within which clinically relevant CNVs contributed to CdLS. However, in the last few years, pathogenic CNVs have been identified in other genes such as HDAC8, RAD21, and SMC1A. Here, we studied an affected girl presenting with a classic CdLS phenotype heterozygous for a de novo ~32 kbp intragenic duplication affecting exon 10 of HDAC8. Molecular analyses revealed an alteration in the physiological splicing that included a 96 bp insertion between exons 9 and 10 of the main transcript of HDAC8. The aberrant transcript was predicted to generate a truncated protein whose accessibility to the active center was restricted, showing reduced ease of substrate entry into the mutated enzyme. Lastly, we conclude that the duplication is responsible for the patient’s phenotype, highlighting the contribution of CNVs as a molecular cause underlying CdLS.This work was supported by the Spanish Ministry of Health-ISCIII Fondo de Investigación Sanitaria (FIS) (Ref. PI19/01860, to F.J.R. and J.P.) and Diputación General de Aragón-FEDER: European Social Fund (Grupo de Referencia B32_17R/B32_20R, to J.P.). A.L.-P. is supported by a “Juan de la Cierva-Incorporación” postdoctoral grant from MICIU (Spanish Ministry of Science and Universities), M.G.-S. is supported by a Predoctoral Fellowship from the Diputación General de Aragón, and C.L.-C. is supported by a Predoctoral Fellowship from the MH-ISCIII. This work was also supported by Spanish government grants RTI2018-094434-B-I00 (MCIU/AEI/FEDER, UE) and DTS20-00024 (ISCIII) to P.G.-P., as well as funds from the European JPIAMR network “EPIC-Alliance” to P.G.-P. The computational support of the “Centro de Computación Científica CCC-UAM” is gratefully recognized. This work was also partially supported by Spanish Instituto de Salud Carlos III, Fondo de Investigaciones Sanitarias co-funded with ERDF funds, Grant No. FIS PI20/01767) to A.P. and by Spanish Instituto de Salud Carlos III, Fondo de Investigaciones Sanitarias co-funded with ERDF funds, Grant No. FIS PI18/000687 to E.F.T
    corecore